Aliphatic and phenolic glycosides from the roots of *Calotropis procera* (Ait.) R. Br.

Abhilasha Mittal\(^1\) and Ali, M.\(^2\)*

\(^1\)Apex Institute of Pharmaceutical Sciences, V.T. Road, Mansarowar, Jaipur-302019, India
\(^2\)Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi-110062, India

Corres.author: maliphyto@gmail.com

Abstract: An \(n\)-butanyl diglucuronoside and a phenolic glycoside characterized as \(n\)-butan-1,4-diol-1,4-\(\beta\)-D-diglucuronopyranoside and O-methylresorcinyl-\(\beta\)-D-glucuronopyranosyl\((2\rightarrow 1)\)-\(\beta\)-D-glucopyranoside, respectively, have been isolated for the first time from the methanolic extract of the roots of *Calotropis procera* (Ait.) R. Br. (Asclepiadaceae) along with the known compounds \(\alpha\)-amyrin acetate and \(\beta\)-sitosterol glucoside. The structures of all the phytoconstituents have been established on the basis of spectral data analysis and chemical reactions.

Keywords: *Calotropis procera*, Asclepiadaceae, Roots, butanediol diglucuronoside, methyl resorcinyl triglycoside.

Introduction

Calotropis procera (Ait) R. Br. (Asclepiadaceae), known as Apple of Sodom, Milkweed or Swan-wort, is a small, hardy, pubescent, evergreen, erect and compact shrub, up to 4.5 m high, covered with cottony tomentum. It exudates copious milky sap when cut. It grows wild in south eastern Asia including India, Pakistan and Afghanistan, tropical Africa, Indochina, Morocco and Senegal mainly in drier and warm regions up to 1,050 m altitude on course, sandy and alkaline soils. Its growth is luxuriant on rubbish heaps, waste or fallow lands, along roadsides, sea shores and river bank\(^1\). The root is cylindrical, branched, curved, light, woody and grayish white. It resembles with the root of *Cephaelis ipecacuanha* (Broter) A. Richard (family Rubiaceae) in action and is substituted for it. The roots are alterative, anthelmintic, depurative, diaphoretic, emetic, expectorant, febrifuge and purgative; used to treat anasarca, asthma, ascites, bronchitis, cough, cutaneous diseases, intestinal worms, leprosy and eczema\(^2\). The root powder promotes gastric secretion; fresh root is used as tooth brush to cure toothache\(^1\). A root paste mixed with the leaves of *Ocimum sanctum* is taken orally to relieve menorrhoea\(^2\). Cardenolides\(^5,6\), flavone glycoside\(^7\), pentacyclic triterpenoids\(^8,13\); sterols\(^7,14\), fatty acids\(^5\) and norditerpenyl ester\(^13\) have been reported from the roots. This manuscript describes the isolation and characterization of new aliphatic and phenolic glycosides from the roots of *C. procera* collected from the arid region of Rajasthan.

Experimental

Melting points were determined on a Perfit melting point apparatus (Ambala, India) and are uncorrected. IR spectra were recorded on KBr discs, using a Bio-Rad FT-IR 5000 spectrometer (FTS 135, Hongkong, China). UV spectra were measured with a Lambda Bio 20 spectrophotometer (Perkin Elmer, Schwerzenbach, Switzerland) in methanol. \(^1\)H and \(^13\)C NMR spectra were scanned using Bruker Advance DRY 400 spectrospin and Bruker Advance DRY 100 spectrospin.

instruments (Germany), respectively, in DMSO-d₆ and TMS as an internal standard. FAB MS spectra were obtained using JEOL-JMS-DX 303 spectrometer (Bruker Daltonics, MA, USA). Column chromatography was performed on silica gel 60-120 mesh. TLC was run on silica gel G (Qualigens, Mumbai, India). Spots were visualized by exposure to iodine vapours, UV radiation and by spraying reagents.

Plant material: The roots of C. procera was collected from waste land of Jaipur, Rajasthan, and identified by Prof. M. P. Sharma, taxonomist, Department of Botany, Faculty of Science, Jamia Hamdard, New Delhi. A voucher specimen (NO. PRL/ JH / 08 / 32) is deposited in the herbarium of the Faculty of Pharmacy, Jamia Hamdard, New Delhi.

Extraction: The air-dried roots (2 kg) of C. procera were coarsely powdered and extracted exhaustively with methanol in a Soxhlet apparatus for 72 hr. The methanolic extract was concentrated under reduced pressure to obtained dark brown viscous mass. Small portion of the extract was analyzed chemically to determine the presence of different chemical constituents. The viscous dark brown mass was adsorbed on silica gel (60-120 mesh) for column chromatography after being dissolved in little quality of methanol for preparation of slurry. The slurry (200 g) was air dried and chromatographed over silica gel column packs in petroleum ether. The column was eluted successively with petroleum ether, mixture of petroleum ether and chloroform (9:1, 3:1, 1:1 and 1:3) eluted successively with petroleum ether, mixture of petroleum ether and chloroform (9:1, 3:1, 1:1 and 1:3) with methanol in a Soxhlet apparatus for 72 hr. The methanolic extract was concentrated under reduced pressure to obtain dark brown viscous mass. Small portion of the extract was analyzed chemically to determine the presence of different chemical constituents. The viscous dark brown mass was adsorbed on silica gel (60-120 mesh) for column chromatography after being dissolved in little quality of methanol for preparation of slurry. The slurry (200 g) was air dried and chromatographed over silica gel column packed in petroleum ether. The column was eluted successively with petroleum ether, mixture of petroleum ether and chloroform (9:1, 3:1, 1:1 and 1:3) finally with pure chloroform. Various fractions were collected separately and matched by TLC to check homogeneity. Similar fractions (having same R_f values) were combined and crystallized. The isolated compounds were purified by preparative TLC and recrystallization.

α-Amyrin acetate: Elution of the column with petroleum ether - chloroform (1 : 9) afforded colourless crystals of α-amyrin acetate (1), recrystallized from acetone, 25 mg (0.022% yield), R_f : 0.6 (petroleum ether-chloroform, 1:1); m.p.: 225-227ºC; IR v_{max} (KBr): 1732, 1638 cm⁻¹; ¹H NMR (CDCl₃): δ 5.12 (1H, m, H-12), 4.45 (1H, dd, J = 5.5, 9.0 Hz, H-3α), 2.03 (3H, brs, COCH₃), 1.13 (3H, brs, Me-25), 1.06 (3H, brs, Me-24), 1.02 (3H, brs, Me-27), 1.00 (3H, brs, Me-24), 0.97 (3H, d, J = 6.1 Hz, Me-30), 0.94 (3H, d, J = 6.3 Hz, Me-29), 0.91 (3H, brs, Me-28), 0.86 (3H, brs, Me-26); ¹³C NMR (CDCl₃): δ 80.43 (C-3), 123.82 (C-12), 139.08 (C-13), 170.43 (Ac), 20.92 (COCH₃); +ve FAB MS m/z (rel. int.) : 468 [M]+⁺ (C₃₂H₅₂O₂) (15.3).

β-Sitosterol glucoside: Elution of the column with chloroform-methanol (19:1) furnished colourless amorphous powder of β-sitosterol glucoside (2), recrystallized from methanol, 260 mg (0.013% yield); m.p.: 270-272ºC; R_f: 0.53 (benzene: chloroform: methanol; 5:4:1). IR v_{max} (KBr): 3450, 2917, 2849, 2383, 1636, 1460, 1074, 795 cm⁻¹; +ve ESI MS m/z (rel. int.): 576 [M]+⁺ (C₃₅H₄₆O₃);

Butanediol diglucuronoside: Elution of the column with chloroform - methanol (4 : 1) gave colourless crystals of butanediol diglucuronoside (3), recrystallized from MeOH, 25 mg (0.022% yield), R_f : 0.8 (CHCl₃-MeOH, 1:3); m.p.: 209 – 211ºC; UV λ_{max} (MeOH): 212 nm (log ε 3.2); IR v_{max} (KBr): 3425, 3388, 3255, 2924, 2854, 1680, 1610, 1404, 1083, 1040 cm⁻¹. 1H NMR (D₂O): δ 5.08 (1H d, J =7.2 Hz H-1’), 4.90 (1H, d, J = 7.1 Hz, H-1”), 4.68 (1H, d, J = 6.3 Hz, H-5”), 4.49 (1H, d, J = 8.1 Hz, H-5’), 4.22 (1H, m, H-2’), 4.19 (1H, m, H-2”), 4.01 (1H, m, H-3’), 4.92 (1H, m, H-3”), 3.72 (1H, m, H-4’), 3.64 (1H, m, H-4”), 3.26 (2H, brs, H-2’), 3.15 (2H, brs, H-2”), 2.61 (2H, m, H-2-2), 2.37 (2H, m, H-2-3); 3¹³C NMR (D₂O): δ 6.42 (C-1), 50.42 (C-2), 43.18 (C-3), 64.20 (C-4), 100.12 (C-1’), 74.11 (C-2’), 72.75 (C-3’), 71.41 (C-4’), 75.56 (C-5’), 181.94 (C-6’), 100.08 (C-1”), 74.09 (C-2”), 72.72 (C-3”), 71.38 (C-4”), 75.56 (C-5”), 179.77 (C-6’); +ve FAB MS m/z (rel. int.) : 442 [M]+⁺ (C₁₆H₂₆O₁₄)(11.3), 397 (38.2), 352 (49.6), 334 (18.3), 193 (51.8), 177 (25.3), 149 (29.6), 133 (35.0).

Compound 3 (5 mg) was dissolved in ethanol (5 ml), dil. HCl (2 ml) added and reaction mixture was heated for 1 hour on a steam bath. The solvent was concentrated under reduced pressure to get β-D-glucuronic acid, mp 164-165ºC, R_f 0.13 (phenol saturated with H₂O).
Methyl resorcinyl triglycoside: Elution of the column with CHCl₃ - MeOH (3 : 2) furnished colourless crystals of methyl resorcinyl triglycoside (4), recrystallized from MeOH, 51 mg (0.044 % yield), Rf: 0.7 (CHCl₃- MeOH, 13:7), m.p.: 160-161°C; UV λmax (MeOH) : 212, 285 nm (log ε 1.3, 0.7); IR νmax (KBr) : 3562, 3389, 3337, 3280, 2940, 2850, 1690, 1460, 1366, 1210, 1003, 942 cm⁻¹; ¹H NMR (DMSO-d₆): δ 7.47 (1H, d, J=3.0 Hz, H-2), 6.57 (1H, m, H-4), 6.22 (1H, m, H-6), 5.59 (1H, m, H-5), 5.13 (1H, d, J= 7.8 Hz, H-1'), 4.89 (2H, m, H-1'', H-1''''), 4.75 (1H, m, H-5'), 4.69 (1H, m, H-5''), 4.46 (3H, brs, OMe), 4.31 (1H, m, H-5''''). 4.05 (1H, dd, J=7.8, 7.6 Hz, H-2'), 4.02 (1H, m, H-2''), 3.90 (1H, m, H-2''''), 3.87 (1H, m, H-3'), 3.70 (1H, m, H-3''), 3.64 (1H, m, H-3'''). The ion peaks generating at m/z 193 [C₅H₈O₅ - COOH]⁺, 149 [193-CO₂]⁺, 177 [C₅H₈O₄ - COOH]⁺ and 133 [177 - CO₂]⁺ suggested the existence of glucuronic acid units in the molecule. The ¹H NMR spectrum of 3 exhibited two one-proton doublets at δ 5.08 (J=7.2 Hz) and 4.90 (J=7.1 Hz) assigned to...
anomeric H-1' and H-1" proton respectively. Two one-proton doublets at δ 4.68 (J = 6.3Hz) and 4.49 (J = 8.1 Hz) were ascribed to sugar H-5' and H-5", respectively. The other sugar protons appeared from δ 4.22 to 3.64. Two broad signals at δ 3.26 and 3.15 were attributed correspondingly to oxygenated methylene H2-1 and H2-4 protons. Two multiplets at δ 2.61 and 2.37 integrating for two protons each were associated with the methylene H2-2 and H2-3 protons respectively. The 13C NMR spectrum of 3 showed the presence of sixteen carbon signals and the important for carboxylic carbons at 181.94 (C-6') and 179.77 (C-6"), anomeric carbons at δ 100.12 (C-1') and 100.08 (C-1") other sugar carbons from δ 75.58 to 71.38, oxygenated methylene carbons at δ 64.20 (C-1, C-2) and other methylene carbons at δ 50.42 (C-2) and 43.18 (C-3). The absence of any signal beyond δ 5.08 in the 1H NMR spectrum and between δ 75.58 to 100.12 in the 13C NMR spectrum supported the saturated nature of the molecule. Acid hydrolysis of 3 yielded β-D-glucuronic acid. On the basis of the foregoing evidences, the structure of 3 has been characterized as n-butan-1,4-diol-1,4-β-D digluconopyranoside.

Compound 4, named methyl resorcinyl triglycoside, was obtained from chloroform - methanol (3 : 2) eluants. It produced effervescences with sodium bicarbonate solution and gave positive tests for glucosides. Its IR spectrum showed characteristic absorption bands for hydroxyl groups (3562, 3389, 3337 cm−1) and carboxylic group (3280, 1690 cm−1). 3337 cm-1) and carboxylic group (3280, 1690 cm -

The authors are thankful to the Head, SAIF, Central Drug Research Institute, Lucknow for recording spectral data of the compounds.

References

