Synthesis of Novel Heterocyclic Pyrazole-3-carboxamides using Nitrilimines

K. R. Jaisankar*, K. Kumaran, S. Raja Mohamed Kamil

Department of Chemistry, Islamiah College, Vaniyambadi, Tamil Nadu, India.

*Corres. Address: jaisankar.kr@yahoo.co.in
Mobile no.09663368075

Abstract: A new series of 1,3,4,5-tetrasubstituted pyrazole carboxamides have been synthesized by the 1,3-dipolar cycloaddition of nitrilimine with p-nitro phenyl acetone. Both analytical and spectroscopic data of all the synthesized compounds are in full agreement with the proposed structures.

Key words: Nitrilimines, 1,3 dipolar cycloaddition, pyrazole-3-carboxylic acid, HATU.

Introduction

A large number of substituted pyridines have been reported to possess several biological activities. Functionally substituted pyridines like Atorivodine is a potent anti HIV agent. Pyrazoles are important class of compounds in the pharmaceutical industry. Compounds containing pyrazole motif are being developed for a wide range of therapeutic areas including CNS, metabolic diseases and endocrine functions and oncology. Several pyrazoles have been successfully commercialized, such as the blockbuster drugs Sildenafil, Celecoxib and Rimonabant. Tetra substituted pyrazole derivatives bearing nitro substituent on phenyl ring shown binding affinity towards estrogen receptor (ER) subtypes ERα and ERβ. In view of this, and in continuation of our work on new pyrazoles and pyridines, we report herein the synthesis of pyridinyl pyrazoles as a new class of pyridine based hetero aryl pyrazole templates. The synthesis of multi-substituted pyrazoles has been extensively studied, and the existing methods are not particularly suitable for the regioselective synthesis of tetra substituted pyrazoles. Two methods have certainly stood out in terms of generality and convenience. One is the venerable Knorr reaction involving the condensation of substituted hydrazines with 1, 3-diketones or their derivatives. The other method is the 1,3–dipolar cycloaddition of diazoalkanes or nitrile imines with olefins or alkynes. As successful as these two methods are in preparing pyrazoles with various substitution patterns, they are not particularly suited for the regioselective synthesis of 1,3,4,5 tetra substituted pyrazoles. These pyrazoles are pharmaceutically important, yet less represented in the literature, probably due to the synthetic difficulties. In recent years, 1,3 dipolar cycloaddition reactions have received considerable attention because they have been shown to be an efficient synthetic tool for the preparation of a wide variety of heterocyclic compounds. The reaction of nitrilimine 1,3 dipoles with dipolarophiles provide a source for the construction of substituted pyrazoles. The stereochemistry of the formation of pyrazoles from nitrilimines was reported in many studies. In view of these facts and in continuation of our studies on the use of hydrazonyl halides as useful precursors for the synthesis of various heterocycles, we report the synthesis of new pyrazole derivatives via reaction of nitrilimine with 4-nitro phenyl acetone.
Chemistry

Herein, we report a regioselective synthesis of 1,3,4,5-tetra substituted pyrazoles from readily available hydrazone. In this case, the transformation involves the 1, 3-dipolar cycloaddition reaction of hydrazonoyl hydrochlorides with 4-nitro phenyl acetone in the presence of excess amount of sodium hydride to give pyrazole-3-carboxylic acid. In this ‘one-flask’ synthesis of 1,3-dipolar reaction, hydrazonoyl hydrochloride was concerned as the masked 1,3-dipole nitrilimine under basic condition. The target compounds were synthesized via the route shown in scheme-1. Diazotization of commercially available 3-Amino pyridine in presence of hydrochloric acid gave the diazonium salt, which was directly coupled with ethyl-2-chloroacetoacetate to afford the oxobutanoate. The one pot regioselective synthesis of pyrazole-3-carboxylic acid 3 was achieved by the 1, 3 dipolar cycloaddition reaction of 2 with 4-nitro phenyl acetone in presence of excess amount of sodium hydride. This key intermediate was converted to pyrazole-3-carboxamides 4(a-i) with different aliphatic and aromatic primary and secondary amines in presence of HATU and DIPEA.

Experimental Methods

All reagents were purchased from Aldrich and used as received. Dry THF, Ethanol and DIPEA were supplied by Spectrochem. All chemistry was performed under a nitrogen atmosphere using standard techniques. All the NMR spectra were measured using either Bruker AMX 400 instrument with 5mm PABBO BB-1H tubes. 1H and 13C NMR spectra were measured for approximately 0.03M solutions in DMSO at 400MHZ with TMS as internal reference. The IR spectra were measured as potassium bromide pellets using a Perkin-Elmer 1600 series FTIR spectrometer. LCMS were obtained using Agilent 1200 series LC and Micro mass zQ spectrometer. Column chromatography was performed using a silica gel (230- 400 mesh). Combustion analysis was performed on a Costech Elemental, Combustion System CHN elemental analyzer.
General procedure:

Ethyl 2-chloro-2-((3-pyridyl) hydrazono) acetate (2):

3-amino pyridine (25 g, 0.265 mol) was dissolved in 250 ml of 6N HCl (250 ml) solution to give a clear solution and stirred to 0°C. Sodium nitrite (18.2 g, 0.265 mol) in water (50 ml) was added drop wise to the reaction mass and stirred for 30 minutes at the same temperature. Later, ethyl-2-chloro acetacetate (43.5 g, 0.265 mol) in ethanol (100 ml) added drop wise for one hour at 0°C. After 30 minutes, sodium acetate (65 g, 0.795 mol) in water (200 ml) was added drop wise to the reaction mixture and stirred for 12 hrs. The precipitated solid was filtered, washed with water and dried under vacuum to afford pale yellow crystals of 2 (4g, 75%). M.P. = 124-127°C. 1H NMR (400 MHz, DMSO): δ 8.72 (d, 1H), 8.63 (s, 1H), 7.63 (d, 1H), 7.26 (d, 2H), 4.54 (q, 2H), 1.46 (t, 3H); 13C NMR (400 MHz, DMSO) δ 160.3, 156.7, 150.89, 146.2, 134.5, 133.3, 124.16, 129.73, 124.17, 123.84, 53.51, 46.56, 46.18, 45.91, 45.20, 41.23, 40.13, 39.92, 38.87, 21.17, 135.30, 132.65, 129.73, 124.17, 140.74, 140.41, 138.77, 135.29, 132.55, 131.21, 124.16, 123.12, 120.53, 115.45, 114.04; MS (ESI) m/z: 481.1 (M+1). Anal. Calcd for C12H10ClN3O2: C, 47.48; H, 6.36; N, 19.34. Found: C, 47.28; H, 6.43; N, 18.30.

N-(5-bromopyridin-2-yl)-5-methyl-4-(4-nitrophenyl)-1-(pyridin-3-yl)-1H-pyrazole-3-carboxamide (4a)

Compound 4a was prepared from 3 (250 mg, 7mmol) and N-acetyl piperazine (102 mg, 8mmol). Then purified by column chromatography (CH2Cl2/MeOH, 9.5/0.5) to afford 4a as pale yellow solid (84%). M.Pt. = 195–198°C; 1H NMR (400 MHz, DMSO) δ 9.03 (s, 1H), 8.74 (d, 1H), 8.47 (s, 1H), 8.23-8.28 (m, 3H), 8.01-8.07 (m, 2H), 7.64-7.72 (m, 3H), 2.36 (s, 3H); 13CNMR (400 MHz, DMSO) δ 160.11, 150.07, 148.67, 146.37, 145.79, 143.19, 140.74, 140.41, 138.77, 135.29, 132.55, 131.21, 124.16, 123.12, 120.53, 115.45, 114.04; MS (ESI) m/z: 481.1 (M’+1). Anal. Calcd for C12H13BrN3O2: C, 52.63; H, 3.15; N, 17.53. Found: C, 52.63; H, 3.15; N, 17.53.

(5-methyl-4-(4-nitrophenyl)-1-(pyridin-3-yl)-1H-pyrazol-3-yl)(4-acetyl piperazin-1-yl) methanone (4b)

Compound 4b was prepared from 3 (250 mg, 7mmol) and N-acetyl piperazine (102 mg, 8mmol), then purified by column chromatography (Pet. Ether/EtOAc, 4/6) to afford 4b as pale brown solid (80%). M.Pt. = 195–198°C; 1H NMR (400 MHz, DMSO) δ 8.88 (s, 1H), 8.71 (d, 1H), 8.47 (s, 1H), 8.28 (d, 2H), 8.01-8.07 (m, 2H), 7.60-7.67 (m, 3H), 2.36 (s, 3H); 13CNMR (400 MHz, DMSO) δ 168.43, 149.39, 146.11, 145.80, 145.27, 138.76, 135.30, 132.65, 129.73, 124.17, 123.84, 53.51, 46.56, 46.18, 45.91, 45.20, 41.23, 40.13, 39.92, 38.87, 21.17, 18.03, 16.69, 11.36. MS (ESI) m/z: 436.1 (M’+1). Anal. Calcd for C20H17N4O4: C, 60.82; H, 5.10; N, 19.34. Found: C, 60.83; H, 5.15; N, 19.30.

General procedure for the preparation of pyrazole-3-carboxamides 4(a-i)

A solution of Compound 3 (1eq), (2-(1H-7-Azabenzotriazol-1-yl)-1,1,3,3-tetramethyl-uronium hexafluorophosphate methanaminium [HATU] (1.5eq) and diisopropylethylamine (1.5eq) in dimethylformamide (5vol) was stirred at room temperature for 30 minutes. After stirring the reaction mixture for 30 minutes, the corresponding amine (1.2 eq) added and stirred the reaction for 2-3 hours. After completion of the reaction the reaction mixture diluted with ethyl acetate and wash with aqueous 1N HCl (10 ml), brine (20 ml), dried over MgSO4, filtered and concentrated to give the crude amide. The crude product was purified by column chromatography to afford pyrazole-3-carboxamides 4(a-i) in 60-90% yield.

N-cyclopropyl-5-methyl-4-(4-nitrophenyl)-1-(pyridin-3-yl)-1H-pyrazole-3-carboxamide (4c)

Compound 4c was prepared from 3 (250 mg, 7mmol) and Cyclopropylamine (45 mg, 8mmol), then purified by column chromatography (CHCl3/MeOH, 9.5/0.5) to afford 4c as pale brown solid (90%); 1H NMR (400 MHz, DMSO) δ 8.91 (s, 1H), 8.71 (d, 1H), 8.71 (s, 1H), 8.36 (s, 1H), 8.26 (d, 2H), 8.13 (m, 2H), 7.62-7.67 (m, 3H), 2.76 (m, 1H), 2.30 (s, 3H), 0.56-0.65 (m, 4H); 13CNMR (400 MHz, DMSO) δ 168.43, 149.39, 146.11, 145.80, 145.27, 138.76, 135.30, 132.65, 129.73, 124.17, 123.84, 53.51, 46.56, 46.18, 45.91, 45.20, 41.23, 40.13, 39.92, 38.87, 21.17, 18.03, 16.69, 11.36. MS (ESI) m/z: 364.1
(4-methyl-1,4-diazepan-1-yl)(5-methyl-4-(4-nitrophenyl)-1-(pyridin-3-yl)-1H-pyrazole-3-yl)methanone (4d)

Compound 4d was prepared from 3 (250 mg, 7 mmol) and N-methyl homopiperazine (91 mg, 8 mmol), then purified by column chromatography (CHCl₃/MeOH, 9.5/0.5) to afford 4d as brown solid. (65%) ¹H NMR (400 MHz, DMSO) δ 8.87 (s, 1H), 8.71 (s, 1H), 8.29 (t, 2H), 8.13 (d, 1H), 7.62-7.67 (m, 3H), 3.68 (d, 2H), 3.58 (t, 2H), 3.49 (t, 2H), 2.42 (s, 3H), 2.30 (s, 3H), 1.93 (m, 2H), 1.82 (m, 2H); ¹³CNMR (400MHz, DMSO) δ163.74, 149.32, 146.05, 145.68, 138.87, 135.32, 132.56, 129.74, 124.17, 123.84, 57.89, 56.37, 55.82, 55.21, 47.19, 44.43, 40.13, 39.92, 38.87, 11.36. MS (ESI) m/z: 421.3 (M⁺+1). Anal. Calcd for C₂₁H₁₄N₂O; C, 62.84; H, 5.75; N, 19.99. Found: C, 62.83; H, 5.72; N, 19.96.

N-(2-iodophenyl)-5-methyl-4-(4-nitrophenyl)-1-(pyridin-3-yl)-1H-pyrazole-3-carboxamide (4g)

Compound 4g was prepared from 3 (250 mg, 7 mmol) and 2-iodoaniline (175 mg, 8 mmol), then purified by column chromatography (PE/EA, 5/5) to afford 4g as Off white solid. (88%). ¹H NMR (400 MHz, DMSO) δ 9.72 (s, 1H), 8.99 (s, 1H), 8.76 (d, 1H), 8.29 (t, 3H), 8.22 (d, 1H), 7.86 (m, 2H), 7.62-7.78 (m, 3H), 7.38 (t, 1H), 6.95(t, 1H), 2.34(s, 3H); ¹³CNMR (400MHz, DMSO) δ 149.70, 145.88, 138.85, 132.69, 131.46, 128.82, 126.92, 124.24, 124.14, 122.95. MS (ESI) m/z: 526.1 (M⁺+1). Anal. Calcd for C₂₆H₁₇N₂O; C, 50.30; H, 3.07; N, 13.33. Found: C, 50.33; H, 3.11; N, 13.32.

(5-methyl-4-(4-nitrophenyl)-1-(pyridin-3-yl)-1H-pyrazole-3-yl)(morpholino)methanone (4h)

Compound 4h was prepared from 3 (250 mg, 7 mmol) and Morpholine (70 mg, 8 mmol), then purified by column chromatography (CHCl₃/MeOH, 9.5/0.5) to afford 4h as pale brown solid. (62%) ¹H NMR (400 MHz, DMSO) δ 8.87 (s, 1H), 8.71 (d, 1H), 8.32 (d, 2H), 8.10 (d, 1H), 7.62-7.67 (m, 3H), 3.48 (t, 4H), 3.38 (t, 4H), 2.40(s, 3H); ¹³CNMR (400MHz, DMSO) δ161.20, 149.38, 146.11, 145.80, 138.79, 135.29, 132.66, 129.71, 124.16, 123.83, 118.83, 66.20, 65.89, 46.98, 41.80, 39.92, 39.08, 11.34. MS (ESI) m/z: 395.1 (M⁺+1). Anal. Calcd for C₂₅H₂₂N₂O; C, 61.06; H, 4.87; N, 17.80. Found: C, 61.09; H, 4.85; N, 17.79.

N-cyclopentyl-5-methyl-4-(4-nitrophenyl)-1-(pyridin-3-yl)-1H-pyrazole-3-carboxamide (4i)

Compound 4i was prepared from 3 (250 mg, 7 mmol) and Cyclopentyl amine (68 mg, 8 mmol), then purified by column chromatography (CHCl₃/MeOH, 9.5/0.5) to afford 4i as pale yellow solid. (78%) ¹H NMR (400 MHz, DMSO) δ 8.92 (s, 1H), 8.71 (d, 1H), 8.26 (d, 2H), 8.12-8.18 (m, 2H), 7.62-7.67 (d, 2H), 2.30(s, 3H), 1.82 (s, 2H), 1.65 (m, 2H), 1.48 (m, 4H), 4.13 (m, 1H); ¹³CNMR (400MHz, DMSO) δ160.03, 149.42, 146.08, 145.96, 139.47, 135.38, 132.69, 131.10, 124.09, 122.94, 50.24, 40.13, 38.87, 31.95, 23.52, 1105. MS (ESI) m/z: 392.17 (M⁺+1). Anal. Calcd for C₂₅H₂₂N₂O; C, 64.44; H, 4.51; N, 17.89. Found: C, 64.47; H, 5.39; N, 17.88.

N-(3-methoxyphenyl)-5-methyl-4-(4-nitrophenyl)-1-(pyridin-3-yl)-1H-pyrazole-3-carboxamide (4f)

Compound 4f was prepared from 3 (250 mg, 7 mmol) and m-Anisidine (98 mg, 8 mmol), then purified by column chromatography (PE/EA, 5/5) to afford 4f as pale brown solid. (75%). ¹H NMR (400 MHz, DMSO) δ 9.00 (s, 1H), 8.73 (s, 1H), 8.29 (d, 2H), 8.20 (d, 1H), 7.62-7.67 (m, 3H), 7.41 (s, 1H), 7.33(d, 1H), 7.21(t, 1H), 6.65(d, 1H), 3.71(s, 3H), 2.34(s, 3H); ¹³CNMR (400MHz, DMSO) δ160.02, 159.39, 149.59,146.26, 146.03, 144.42, 140.09, 139.73, 139.21, 135.34, 132.75, 131.18, 129.32, 124.13, 123.09, 112.32, 109.28, 105.77. MS (ESI) m/z: 430.1 (M⁺+1). Anal. Calcd for C₂₃H₁₆N₂O₄; C, 64.33; H, 4.46; N, 16.31. Found: C, 64.30; H, 4.44; N, 16.33.
Conclusion
In conclusion, we prepared some tetra substituted pyrazole derivatives regioselectively in good yields via the reaction of nitrilimine derivative. Furthermore, this newly developed methodology can be applied to various acetone substrates including aliphatic, cyclic aliphatic and aromatic acetones. The above approach has been proved very useful for the construction of new heterocycles of potential pharmacological interest.

Acknowledgement:
The authors express their profound gratitude to the VME Society, Islamiah College, Vaniyambadi for the laboratory facilities provided to carry out the research work. They also acknowledge the help rendered by Dr. Syed Shafi, Department of Chemistry, Thiruvalluvar University, Vellore. Authors are thankful to NMR RESEARCH CENTRE, Indian Institute of Science, Bangalore and CECRI, Karaikudi for spectral studies.

References
