Development and Validation of First Order Derivative Spectroscopic Method for Content Uniformity for Simultaneous Estimation of Ebastine and Phenylephrine Hydrochloride in Combined Tablet Dosage Form

Bhavini N. Patel ${ }^{1 *}$, Chaganbhai N. Patel ${ }^{2}$, Nisha B. Patel ${ }^{1}$
${ }^{* 1}$ Department of Quality Assurance, Shri Sarvajanik Pharmacy college, Mehsana-384001, Gujarat, India.
${ }^{2}$ Shri Sarvajanik Pharmacy college, Mehsana-384001, Gujarat, India.
Corres.author: nishab567@gmail.com, bhavi_pharma22783@yahoo.co.in
Phone No : +919510006441, +919979110202

Abstract

A novel, simple, accurate, sensitive and reproducible first order derivative spectroscopic method was developed and validated for estimation of Ebastine and Phenylephrine Hydrochloride in combined dosage form. The method obeys Beer's Law in concentration ranges of $5-40 \mu \mathrm{~g} / \mathrm{ml}$ for Ebastine and Phenylephrine Hydrochloride both. The method was validated for linearity, accuracy and precision as per ICH guidelines. The zero crossing point for Ebastine and Phenylephrine hydrochloride was 231.61 nm and 242.21 nm respectively in methanol. The LOD and LOQ value were found to be $0.84 \mu \mathrm{~g} / \mathrm{ml}$ and $2.54 \mu \mathrm{~g} / \mathrm{ml}$ for Ebastine, $0.94 \mu \mathrm{~g} / \mathrm{ml}$ and $2.85 \mu \mathrm{~g} / \mathrm{ml}$ for Phenylephrine hydrochloride respectively. The accuracy of method was assessed by recovery studies was found to be 99.74 ± 0.1386 and 100.23 ± 0.0854 for Ebastine and Phenylephrine hydrochloride respectively. The developed and validated method was successfully used for quantitative analysis of commercially available dosage forms. The developed method further can be useful for dissolution study and bio analytical study for these drugs in combinations.

Key words:Ebastine, Phenylephrine hydrochloride, First order derivative spectroscopic method, Simultaneous estimation, Accuracy, Precision.

INTRODUCTION:

Ebastine (EBS) chemically is 4-(4-benzhydryloxy-1-piperidyl)-1-(4-tert-butylphenyl) butan-1-one. It is a longacting nonsedating second-generation H 1 receptor antagonist that is indicated mainly for allergic rhinitis and chronic idiopathic urticaria. The chemical structure of EBS is shown in Figure 1.

Phenylephrine hydrochloride (PHE) chemically is (1R)-1-(3-Hydroxyphenyl)-2-(methylamino) ethanol hydro chloride. It is a selective α_{1}-adrenergic receptor agonist used for treatment of stuffy nose, sinusitis, bronchitis,
vascular failure in shock, and drug-induced hypersensitivity.The chemical structure of PHE is shown in Figure 2.

Combined formulation of Ebastine and Phenylephrine hydrochloridehave additive or synergistic role in cough and antiallergic preparation, since both acts by attenuating the sign and symptoms of common cold and allergy. So, quality of this formulation is most important. So, it is useful to develop method for testing of quality of this formulation. ${ }^{[1]}$

Literature Survey reveals that no method for first order derivative spectroscopy for EBS and PHE in tablet dosage form has been reported. However simple UV methods ${ }^{[2-5]}$ and RP-HPLC method ${ }^{[6]}$ for EBS and PHE have been noted. Simple UV methods ${ }^{[7-14]}$ and RP-HPLC ${ }^{[15-19]}$ for EBS and simple UV methods ${ }^{[20-24]}$ and RPHPLC ${ }^{[25-42]}$ for PHE have been noted. Hence attempt has been made to develop and validate in accordance with ICH guidelines, a simple, precise and accurate first order spectrophotometric method for simultaneous estimation of EBS and PHE in combined tablet dosage form.

Figure 1: Structure of Ebastine

Figure 2: Structure of Phenylephrine hydrochloride

EXPERIMENTAL

Materials and equipment:

Reference standards of EBS and PHE were procured as gift samples from Bal Pharma Pvt. Ltd. (Bangalore) methanol AR grade was purchased from RFCL Ltd., India. Tablets of Ebast-DC were purchased from local market; each tablet was labeled to contain 10 mg EBS and 10 mg of PHE.

Instrumentation:

Double beam UV-Visible spectrophotometer (Shimadzu 1800 with UV Probe 2.42 software) and a pair of 1 cm matched quartz cells were used. Acculab AUX 220 electronic analytical balance.

Selection of solvent:

EBS and PHE are soluble in methanol. So, methanol is selected as solvent and used for preparation of stock solutions and working standard solutions.

Preparation of standard solutions:

Preparation of EBS and PHE stock - working standard solution:

Accurately weighed 25 mg of EBS and 25 mg PHE were transferred to 25 ml volumetric flask individually, dissolved and diluted up to mark with methanol to obtain final concentration of $1000 \mu \mathrm{~g} / \mathrm{ml}$ EBS and 1000 $\mu \mathrm{g} / \mathrm{ml}$ PHE. Solution was further diluted with methanol to obtain working standard solutions of $100 \mu \mathrm{~g} / \mathrm{ml}$ of EBS and $100 \mu \mathrm{~g} / \mathrm{ml}$ PHE respectively.

Determination of zero crossing point:

Solutions having concentration5, 10, 15, 20, 25, 30, 35 and $40 \mu \mathrm{~g} / \mathrm{ml}$ for EBS and concentration 5, 10, 15, 20, $25,30,35$ and $40 \mu \mathrm{~g} / \mathrm{ml}$ for PHE were prepared separately by appropriate dilution of standard stock solution and scanned in the spectrum mode from 400 nm to 200 nm . The zero order spectra of both the drugs were derivatised to first order. First order derivative spectra were selected for analysis of both the drugs. From the
overlain spectra of both drugs (Figure 3), wavelength selected for quantitation were 242.21 nm for EBS (zero cross for PHE) and 231.61 nm for PHE (zero cross for EBS).

Figure 3: Overlain first order spectra of EBS and PHE in methanol

Preparation of Calibration curve for EBS and PHE:

Solutions having concentration $5,10,15,20,25,30,35$ and $40 \mu \mathrm{~g} / \mathrm{ml}$ for EBS and concentration 5, 10, 15, 20, $25,30,35$ and $40 \mu \mathrm{~g} / \mathrm{ml}$ for PHEin mixture were prepared from working standard solution and spectra were recorded in spectroscopic condition. Spectra were converted to first order derivative spectra using UV probe software (ver. 2.42). Amplitude ($\mathrm{dA} / \mathrm{d} \lambda$) of both the drugs was measured at 242.21 nm for EBS (zero cross for PHE) and 231.61 nm for PHE (zero cross for EBS). Standard calibration curves of $\mathrm{dA} / \mathrm{d} \lambda$ vs. concentration were plotted(Figure 4 and 5).

Figure 4: Calibration curve of EBS (at ZCP of PHE)

Figure 5: Calibration curve of PHE (at ZCP of EBS)

Method validation: ${ }^{[43]}$

The method was validated by validation parameters linearity, precision, accuracy, robustness, LOD and LOQ.

Linearity:

Series of standard solutions were prepared by dilution of the working standard solutions with methanol which having concentration $5,10,15,20,25,30,35$ and $40 \mu \mathrm{~g} / \mathrm{ml}$ for EBS and concentration 5, 10, 15, 20, 25, 30, 35 and $40 \mu \mathrm{~g} / \mathrm{ml}$ for PHE. The absorbances of the derivatised spectra were measured at 242.21 nm and 231.61 nm for EBS and PHE, respectively. Six replicate analyses were carried out.

Precision:

Repeatability:Solution containing mixture of $10 \mu \mathrm{~g} / \mathrm{ml}$ of EBS and $10 \mu \mathrm{~g} / \mathrm{ml}$ of PHE (100% test concentration) were prepared from working standard solution and analyzed as per the proposed method for system precision, method precision, reproducibility, intra-day and inter-day precision. The mean $\%$ labelled claim with its standard deviation and $\%$ relative standard deviation was computed for the drugs.

Intraday Precision: Solution containing the mixture of 15 and $15 \mu \mathrm{~g} / \mathrm{ml}, 20$ and $20 \mu \mathrm{~g} / \mathrm{ml}$ and 25 and $25 \mu \mathrm{~g} / \mathrm{ml}$ ofEBS and PHE respectively were prepared and analyzed. Analysis was replicated for 3 different times within same day and $\%$ RSD was calculated.

Interday Precision: Solution containing the mixture of 15 and $15 \mu \mathrm{~g} / \mathrm{ml}, 20$ and $20 \mu \mathrm{~g} / \mathrm{ml}, 25$ and 25 $\mu \mathrm{g} / \mathrm{mIEBS}$ and PHE respectively were prepared and analyzed. Analysis was replicated for 3 different days and \%RSD was calculated.

Accuracy:

Tablet powder equivalent to 10 mg was transferred to three individual 100 ml volumetric flask, 15 ml methanol was added to dissolve the drugs and add 8 mg (Flask 1), 10 mg (Flask 2), and 12 mg (Flask 3) of standard powder of both EBS and PHE, and sonicated for 10 minutes then made up to the mark with methanol to made them $80 \%, 100 \%$ and 120% spiking. The solution was then filtered through a Whatmann filter paper. Pipette out 1.0 ml filtered solution from each flask is diluted 10 times. At each level of the amount three determinations were performed and the result obtained was compared with expected results.

Robustness:

The robustness of an analytical procedure is the measure of its capacity to remain unaffected by small, but deliberate, variations in method parameters and provides an indication of its reliability during normal usage. The parameters were change of scanning speed and change in manufacturer of methanol. The result is expressed in percentage RSD. Three replicate analyses were carried out.

Ruggedness:

Solution containing mixture of $10 \mu \mathrm{~g} / \mathrm{ml}$ EBS and $10 \mu \mathrm{~g} / \mathrm{ml}$ PHE was prepared from their respective stockworking standard solutions prepared. Prepared solution was analyzed as per proposed method by 2 different analyst. The mean $\%$ labelled claim with its standard deviation and $\%$ relative standard deviation was computed for each analysis.

Limit of detection (LOD) and limit of quantitation (LOQ):

Limit of Detection (LOD) and Limit of Quantitation were determined on the basis of standard deviation and slop of the regression equation.

LOD $=(3.3 \times$ SD $) /$ Slope
LOQ $=(10 \times$ SD $) /$ Slope

Content uniformity:

Randomly select 10 units and perform testing on each individual. Each individual tablet was weighed and finely powdered. For a single tablet a portion of powder equivalent to the weigh of 10 mg was accurately weighed and transferred into 10 ml volumetric flask and 5 ml methanol was added. The volumetric flask was sonicated for 20 min to effect complete dissolution of the EBS and PHE, the solution was then made up to volume with methanol. The solution was filtered through Whatman filter paper. The aliquot portion of the filtrate was further diluted to get final concentration of $20 \mu \mathrm{~g} / \mathrm{ml}$ of EBS and $20 \mu \mathrm{~g} / \mathrm{ml}$ of PHE. The \% stated value of the drugs was calculated.

Table 1 - Result of linearity, range, LOD and LOQ for First order derivative spectroscopy

Parameter		EBS	PHE
Linearity	Range	$5-40 \mu \mathrm{~g} / \mathrm{ml}$	$5-40 \mu \mathrm{~g} / \mathrm{ml}$
	Equation	$\mathrm{y}=0.0012 \mathrm{x}-0.0015$	$\mathrm{y}=-0.0007 \mathrm{x}-0.0006$
	R^{2}	0.9996	0.9991
	$0.84 \mu \mathrm{~g} / \mathrm{ml}$	$0.94 \mu \mathrm{~g} / \mathrm{ml}$	
LOQ	$2.54 \mu \mathrm{~g} / \mathrm{ml}$	$2.85 \mu \mathrm{~g} / \mathrm{ml}$	

Table 2 - Result of accuracy study for First order derivative spectroscopy

Level	Total Amount Taken (mg)			Amount Obtained (mg)		\% Recovery		SD		\%RSD	
		S	PHE	EBS	PHE	EBS	PHE	EBS	PHE	EBS	PHE
L-1	1	18	18	17.83	18.17	99.07	100.94	0.1450	0.1021	0.8066	0.5646
	2			17.98	18.14	99.88	100.78				
	3			18.12	17.98	100.67	99.89				
Mean \% Recovery				17.98	18.09	99.87	100.54				
L-2	1	20	20	19.91	20.08	99.58	100.04	0.1386	0.0854	0.6955	0.4257
	2			20.10	20.15	100.5	100.75				
	3			19.83	19.98	99.15	99.90				
Mean \% Recovery				19.94	20.07	99.74	100.23				
L-3	1	22	22	21.83	21.86	99.24	99.35	0.1500	0.1429	0.6824	0.6524
	2			22.13	22.14	100.59	100.63				
	3			21.98	22.05	99.90	100.22				
Mean \% Recovery				21.98	21.91	99.91	100.07				

Table 3 - Result of Precision for First order derivative spectroscopy

Parameter	Drug	SD	\% RSD
Repeatability (n=6)	EBS	0.3040	0.3061
	PHE	0.3889	0.3913
	EBS	0.7082	0.7041
	PHE	0.9192	0.9203
Inter-day Precision $(\mathrm{n}=3)$	EBS	0.4198	0.4206
	PHE	0.4681	0.4689

Table 4-Result of Robustness study for First order derivative spectroscopy

Variation and Level		Concentratio $\mathrm{n}(\mu \mathrm{g} / \mathrm{ml})$		\% Labelled Claim		Mean		SD		\%RSD	
		EBS	PHE								
Change in Scanning speed	Slow	10	10	99.11	99.34	99.61	99.77	0.5156	0.4457	0.5176	0.4467
	Medium	10	10	99.58	99.74						
	Fast	10	10	100.14	100.23						
Change in methanol manufacture	Merck	10	10	99.14	98.76	99.62	99.34	0.6858	0.8273	0.6884	0.8327
	Rankem	10	10	100.11	99.93						

Table 5-Result of Ruggedness Study for First order derivative spectroscopy

Variation and Level		Concentratio $\mathrm{n}(\mu \mathrm{g} / \mathrm{ml})$		\% Labelled Claim		Mean		SD		\%RSD	
		EBS	PHE								
Different Analyst	Analyst-1	10	10	99.34	98.76	99.93	99.26	0.8414	0.7071	0.8420	0.7123
	Analyst-2	10	10	100.53	99.76						

Table 6-Content uniformity result by First order derivative spectroscopy

Sr. no.	Labelled claim (mg)		$\mathrm{dA} / \mathrm{d} \lambda$		Amount obtained (mg)		\%Labelled Claim	
	EBS	PHE	EBS	PHE	EBS	PHE	EBS	PHE
1	10	10	0.0227	-0.0145	10.08	9.92	100.83	99.28
2	10	10	0.0223	-0.0147	9.91	10.07	99.16	100.71
3	10	10	0.0228	-0.0144	10.12	9.85	101.25	98.57
4	10	10	0.0224	-0.0146	9.95	10.00	99.58	100.00
5	10	10	0.0226	-0.0145	10.04	9.92	100.41	99.28
6	10	10	0.0222	-0.0148	9.87	10.14	98.75	101.42
7	10	10	0.0229	-0.0144	10.16	9.85	101.66	98.57
8	10	10	0.0225	-0.0147	10.00	10.07	100.00	100.71
9	10	10	0.0221	-0.0148	9.83	10.14	98.33	101.42
10	10	10	0.0223	-0.0147	9.91	10.07	99.16	100.71

RESULTS AND DISCUSSION

The method discussed in the present work provides a convenient and accurate way for simultaneous analysis of EBS and PHE. In first order derivative spectroscopy, wavelengths selected for quantitation were 242.21 nm for EBS (ZCP for PHE) and 231.61 nm for PHE (ZCP for EBS). Both the drugs obey the Beer's law with the concentration range (EBS: $5-40 \mu \mathrm{~g} / \mathrm{ml}$, PHE: $5-40 \mu \mathrm{~g} / \mathrm{ml}$) with R^{2} value of 0.9996 and 0.9991 for EBS and PHE respectively $(\mathrm{n}=6)$ (Figure 4 and 5, Table 1). The mean $\%$ recovery was found to be 99.74% and 100.23%
for EBS and PHE respectively (Table 2).The Limit of Detection (LOD) and Limit of Quantitation (LOQ) value was found to be $0.84 \mu \mathrm{~g} / \mathrm{ml}$ and $2.54 \mu \mathrm{~g} / \mathrm{ml}$ for EBS and $0.94 \mu \mathrm{~g} / \mathrm{ml}$ and $2.85 \mu \mathrm{~g} / \mathrm{ml}$ for PHE respectively (Table 1).A result of precision, robustness and ruggedness for this method was also dicussed in tables (Table 3,4 and 5).The Content uniformity results are discussed in table (Table 6).

The proposed method was found to be simple, accurate and rapid for the routine estimation of Ebastine and Phenylephrine hydrochloride in tablet formulation. To study the validity and reproducibility of proposed method, recovery studies were carried out. The method was validated in terms of linearity, accuracy, precision and robustness. So, method can be successfully used for simultaneous estimation of Ebastine and Phenylephrine hydrochloride in combined dosage form. The developed method further can be useful for dissolution study and bio analytical study for these drugs in combinations.

Acknowledgements:The authors are thankful to Shri Sarvajanik Pharmacy College for providing facilities to carry out the research work. Authors are grateful to Bal Pharma Pvt. Ltd.(Bangalore) for providing gift sample of EBS and PHE.

REFERENCES

1. Tripathi K.D., Essentials Of Medical Pharmacology; 6th Edn; Jaypee Publication, 2008, 62-63,110-115,140-141.
2. Soni L.K, Narsinghani T.and Saxena C., UV Spectrophotometric estimation of Ebastine and Phenylephrine hydrochloride in tablet dosage form using absorption ratio method, Pelagia Res. Lib., 2011, 2(6), 11-16.
3. Soni L.K., Narsinghani T. and Saxena C., Development and Validation of UV spectrophotometric assay protocol for simultaneous estimation of Ebastine and Phenylepherine hydrochloride tablet dosage form using simultaneous equation method, Int. J. Chemtech Res., .2011, 3(4), 1918-1925.
4. Wagh R., Hajare R. and Tated A. Absorption Correction Method and Simultaneous Equation method for the simultaneous estimation of ebastine and phenylephrine hydrochloride in bulk and in combined tablet dosage form, Int. J. Res. In Pharm. Chem., 2011, 1(4), 812-819.
5. Soni L. K., Narsinghani T. and Saxena C. UV- Spectrophotometric Estimation of Ebastine and Phenylepherine Hydrochloride in Tablet Formulation using Dual Wavelength Method, Pharm. Sci., 2013, 2, 9-11.
6. Wagh R. and Hajare R., Method Development and Validation for Simultaneous Determination of Ebastine and Phenylephrine hydrochloride in tablet formulation by RP-HPLC, Int. J. Pharm. Res. Devel., 2011, 3(7), 214-220.
7. Dahivadkar M.Jain H.K. and Gujar K., Development and Validation of UV spectrophotometric estimation of Ebastine in bulk and tablet dosage form using area under curve method,Int. Res. J. Of Pham. 2013, 6,2230-2246.
8. Jangid R. K. and Magdum C. S., Development and Validation of UV Spectrophotometric method for simultaneous estimation of Ebastine and Montelukast sodium in bulk and marketed dosage form, Int. J. Pharm. Res. Devel., 2013, 5, 51-56.
9. Savsani J.J., Goti P. and Patel P.B.,Development and Validation of simultaneous equation method for estimation of Ebastine and montelukast sodium in combined tablet dosage form, Pelagia Res. Lib., 2012, 7, 976-987.
10. Savsani J J., Goti P. and Patel P. B.,Simultaneous UV spectrophotometric Method for estimation of Ebastine and montelukast sodiumIn tablet dosage form by Q- Ratio Method, Int. J. Chemtech Res., 2013, 11, 47-55.
11. Savsani J J., Goti P. and Patel P.B.,Development and validation of first order derivative spectroscopic method for content uniformity for simultaneous estimation of ebastine and montelukast sodium in combined tablet dosage form, Indo Am. J. of Pharm. Res.,2013, 15,2231-2238.
12. Rana N. S., Patel N. N., Limbachiya U., and Pasha T.Y. Derivative Spectrophotometric method for simultaneous estimation of montelukast sodium and Ebastine in bulk and their combined tablet dosage form,As.J. Res. Chem.,2013, 7,974-984.
13. Prabu S. L. and Shirwaikar A., Determination of Ebastine in pharmaceutical formulations by HPLC,Ind. J. Pharm. Sci., 2008, 70(3),406-407.
14. Nelofer S.M. and Janardhan M.,Analytical Method development and Validation for the assay of Ebastine in Ebastine mouth dissolving tablets,Int. J. Pharm. Clin. Res., 2012, 4(4), 50-60.
15. Agrawal P.N. and Teli N. E., A Validated simplified RP-HPLC method for estimation of Ebastine from bulk drugs,As. J. Res. Chem.,2013, 12,974-989.
16. Ibrahim F.and Mohie K.,Validated stability indicating liquid chromatographic determination of ebastine in pharmaceuticals after pre column derivatization: Application to tablets and content uniformity testing, Chem. Cen. J., 2011,5(24),245-258.
17. Arend M. Z.,Cardoso S. G., Hurtado F. K. and Ravanello A.,Development and Validation of Stability indicating LC method for determination of Ebastine in tablet and syrup, Chromatographia, 2009, 69, 195-199.
18. Anand J. and Mohan S., Development and Validation of RP-HPLC Method for Simultaneous Estimation of Ebastine and Montelukast Sodium In Combined Dosage Form. Am. J. Pharmatech Res. 2013, 2249-3387.
19. Patil T. N.,Firke S.D., Bari S.B. and Joshi N.S., Method Development and Validation of Ebastine and montelukast sodium in tablet formulation by RP-HPLC, Iventi rapid: Pharm. Anal. Qual. Ass.,2013, 13,672.
20. Wankhede S.B., Lad K.A. and Chitlange S.S., Development and validation of UV-Spectrophotometric Methods for simultaneous estimation of cetrizine hydrochloride and Phenylephrine hydrochloride in tablets,Int. J. of Pharm. Sci. Drug Res. 2012, 4(3), 222-226.
21. Wadher S.J., Kalyankar T.M. and Panchal P.P., Development and validation of simultaneous estimation of chlorpheniramine maleate and phenylepherine hydrochloride in bulk and capsule dosage form by ultra - violet spectrophotometry, Int. J. Chemtech Res., 2013, 5, 2410-2419.
22. Sardana S. and Mashru R.C.,Simultaneous Determination Of Phenylephrine Hydrochloride And Tropicamide In Ophthalmic Dosage Form With Three Rapid Derivative Spectrophotometric Methods, J. Chilean Chem. Soc., 2012, 55, 515-518.
23. Deshmukh V.V., Wagh D. D., Vassa S. P. and Gujar K. N., Development of first order derivative ultraviolet spectrophotometric method for simultaneous estimation of levocetrizine hydrochloride and phenylephrine hydrochloride in bulk and combined dosage form, Int. Res. J. Pharm.2013,4(5), 22308407
24. Savic I., Nikolic G., and Bankovic V.,The Simultaneous Spectrophotometric determination of Trimazolin and phenylephrine hydrochloride in nasal preparations. Chemical industry and chemical engineering quarterly, 2008, 14(4), 261-264.
25. Gupta Vishnu D., Chemical stability of phenylephrine hydrochloride after reconstitution in 0.9% sodium chloride injection for infusion, Int. J. Pharm. Comp., 2004, 8, 152-155.
26. Vuma V. and Kanfer I., High Performance Liquid Chromatographic determination of phenylephrine in human serum with coulometric detection, J. Chrom. B. Biomed. App., 1996, 678(2), 245-252.
27. Maithani M., Raturi R., Gautam V. and Kumar D. Development and validation of a RP-HPLC method for the determination of chlorpheniramine maleate and Phenylephrine in pharmaceutical dosage form, Int. J. Comp. Pharm, 2010, 5(5), 976-988.
28. Sanchaniya P. M., Mehta F. A. and Uchadadiya N. B.,Development and Validation of an RP-HPLC Method for Estimation of Chlorpheniramine Maleate, Ibuprofen, and Phenylephrine Hydrochloride in Combined Pharmaceutical Dosage Form, Chrom. Res. Int., 2013, 424-439.
29. Palled M., Karagane S., Mane A., Bhat A. and Shinde P., Analytical method development and validation of acetaminophen, caffeine, Phenylephrine hydrochloride and dextromethorphan hydrobromide in tablet dosage form by RP-HPLC, Int. J. Pharm. Sci. Inv., 2013, 09-15.
30. Bandelwar R., Nikam A. and Sawant S., Analytical method development and validation of phenylephrine hydrochloride, chlorpheniramine maleate, paracetamol and caffeine in bulk drug and tablet dosage form by RP-HPLC, Indo Am. J. Pharm. Res., 2013, 119-129.
31. Petra K., Hana S., Ivana B. and Petr S.,Development and validation of a rapid HPLC method for the determination of ascorbic acid, phenylephrine, paracetamol and caffeine using a monolithic column. Royal Society of Chemistry, 2012, (4), 1588-1591.
32. Kumar A., Sharma R., Nair A. and Saini G.,Development and validation of RP-HPLC method for simultaneous estimation of nimesulide, phenylephrine hydrochloride, chlorpheniramine maleate and caffeine anhydrous in pharmaceutical dosage form, Acta Pol Pharm., 2012, 69(6), 1017-22.
33. Tuljapure D.S., Gowekar N.M., Yadav S.S. and Mogale A.S., Development and validation of RPHPLC method for simultaneous estimation of levocetrizine dihydrochloride and phenylephrine in bulk and tablet dosage form, Am.J.Pharmtech Res.,2013,2249-2260.
34. Sheikh S., Asghar S. and Patni S. A., Validated, Specific Stability indicating Reverse Phase Liquid Chromatographic Method for the simultaneous estimation of phenylepherine HCL, Betamethasone Valerate \& Lignocaine HCL in Pharmaceutical ointment. Int. J. Sci. Res. Pub., 2012, 2, 2250-2266.
35. Kotaiah P. and Kamarapu S.K., Method development and validation of RP-HPLC method for simultaneous estimation of dextromethorphan hydrobromide, phenylepherine hydrochloride and triprolidine hydrochloride in bulk and combined tablets dosage forms, Int. J. Pharm. Bio. Sci., 2013, 3, 172-179.
36. Marin A., Garcia E., Garcia A. and Barbas C.,Validation of HPLC quantification of acetaminophen, phenylepherine and chlorpheniramine in pharmaceutical formulations: capsules and sachets, J. Pharm. Biomed. Anal., 2002, 701-714.
37. Malakar P., Deb A.R., Adhikary S., Ahmed S. and Maloth R., Simultaneous estimation of phenylephrine hydrochloride, paracetamol,caffine and cetrizine dihydrochloride from tablet dosage form using RP-HPLC, Int. J. Bio. Pharm. Res., 2013, 4(5), 368-376.
38. Nanaware D.A., Bhusari V.K. and Dhaneshwar S.R., Validated HPLC method for simultaneous quantitation of levocetrizine dihydrochloride and phenylephrine hydrochloride in bulk drug and formulation, Am. J. Pharm. Res., 2013. 2231-2247.
39. Redsani V.K., Gorle A.P., Badhan R.A., Jain P.S., Surana S. J.,Simultaneous Determination of Chlorpheniramine Maleate, Phenylephrine Hydrochloride, Paracetamol And Caffeine InPharmaceuticalPreparation By RP-HPLC, Chem. Ind. Chem. Eng. Quart., 2013, 19(1), 57-65.
40. Malakar P., Deb A. R. and Veliyath S. K. Simultaneous quantitation and validation of Phenylephrine hydrochloride, ambroxol hydrochloride and levocetrizine hydrochloride in syrup formulation by reverse phase high performance liquid chromatography, Int. J. Pharm. Sci. Res., 2013, 4(8), 3028-3038.
41. Hamide S. and Tuncel O., Simultaneous high - performance liquid chromatographic determination of paracetamol, Phenylephrine HCL and chlorpheniramine maleate in pharmaceutical dosage forms, J. Chrom. Sci., 2002, 40, 56-69.
42. Nora H., Simultaneous determination of chlorpheniramine maleate, dextromethorphan HBR and phenylepherine HCL in codilar syrup using high performance liquid chromatography,J. Pharm. Sci. Inn., 2012, 29-32.
43. ICH, Q2(R1), Harmonised tripartite guideline, Validation of analytical procedures: Text and Methodology International Conference on Harmonization ICH, Geneva, 2005.
