Convenient Syntheses and Antimicrobial Screening of Some Derivatives of Complex Benzoxazinophenothiazines

B. E. Ezema*, J. I. Ayogu, P. C. Uzoewulu, S. A. Agada

Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria

Abstract: Four angular precursors for the synthesis of the complex derivatives were prepared by one step condensation reactions of 2,3-dichloronaphthalene-1,4-dione with 2-amino-4-nitrophenol, 2-amino-4-chlorophenol, 5-amino-4,6-dihydroxylpyrimidine and 5,6-diamino-4-hydroxylpyrimidine correspondingly in base catalyzed medium. The angular precursors on further condensation with aromatic thiols gave the complex derivatives. The Structural confirmation was done using UV-Visible spectroscopy, FT-IR, ¹H- and ¹³C-NMR and elemental analysis. The synthesized compounds were screened for their anti-microbial activities and the results showed that the complex derivatives were significantly active against the microorganisms.

Keywords: Condensation reactions; 2,3-dichloronaphthalene-1,4-dione; 2-amino-4-nitrophenol; 2-amino-4-chlorophenol; 5-amino-4,6-dihydroxylpyrimidine; 5,6-diamino-4-hydroxylpyrimidine; base catalyzed medium.

1.0. Introduction

The chemistry of phenothiazines has generated intensive scientific interest due to their biological properties [1]. Some phenothiazines are found to be worming agents for livestocks, their pesticidal action results from the fact that they affect the nervous system of insects by inhibiting the breakdown of acetylcholine [2-3]. Structural modifications of phenothiazine have been successfully utilized in the design of variety of pharmaceuticals that are clinically used for antitubercular activity [4], cholinesterase inhibitor [5], histamine antagonist and multiple drug resistance reverting agents [7]. Side substituted phenothiazine derivatives are also of great interest because of their photophysical and optoelectrochemical properties [8-10]. A lot of Structural modifications of the phenothiazine ring have been reported as well as the synthesis of its complex structural analogues. Although some successful preparations of the angular system and three-branched system have been reported [11-14] there are still few reports on the anti-microbial properties. The authors here report the successful screening of some synthesized derivatives of complex benzoxazino-phenothiazines.

Experimental

All the starting materials and reagents were obtained from commercial sources and were used without further purification. All the reactions were performed in a functional fume chamber and the reactions completion were monitored with TLC. The purity of the compounds was also ascertained by TLC. The melting points were determined with Fischer John’s melting point apparatus and were uncorrected. IR spectra were recorded on 8400S Fourier Transform Infrared (FTIR) spectrophotometer and were reported in wave number (cm⁻¹). UV spectra were also recorded on UV-2500 PC series spectrometer using matched 1cm quartz cells,
absorption maxima were given in nanometers (nm). The 1H-NMR was scanned at University of Newcastle, United Kingdom on a JEOL FX-90Q spectrometer using TMS as internal standard (chemical shift in δ). Elemental analysis was carried on Heraeus Elemental Analyzer. Biological activities tests were carried out in the Laboratories of the Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka.

2.0. General Procedure for the Preparation of Angular Phenoxazine Derivatives

2.1. 6-Chloro-10-nitrobenzo[a]phenoxazin-5-one (3)

2-Amino-4-nitrophenol (2.0 g, 13 mmole) 2 was poured in a reaction flask containing chloroform (100 mL), DMF (10 mL) and anhydrous sodium carbonate (1.40 g, 13 mmole). The mixture was warmed in water bath until complete dissolution. 2,3-dichloronaphthalene-1,4-dione (3.20 g, 13 mmole) 1 was later added and the mixture was refluxed for 5 h. At the end of the reaction period, chloroform solvent was distilled off in vacuum and the slurry poured into water and stirred to dissolve the inorganic materials. It was left to stand overnight, filtered, air dried and recrystallized twice from methanol-acetone mixture to give 6-chloro-10-nitrobenzo[a]phenothiazin-5-one (mp > 280 °C). UV-Visible (MeOH), λ_{max}(nm): 490, 443, 350, 314, 253, 220; IR (KBr) V_{max}: 3078 (=C-H), 1710 (C=O), 1630 (C=N of aromatic), 1584, 1451 (C=C of aromatic) cm$^{-1}$; 1NMR (400 MHz, CDCl$_3$): 7.90 (2H, d), 7.75 (2H, d), 7.20 (2H, d), 7.05 (1H, d); Anal. Calcd (found) for C$_{10}$H$_7$ClN$_2$: C, 58.82 (58.87); H, 2.16 (2.19); Cl, 10.85 (10.80); N 8.57 (8.63).

2.2. 6,10-Dichlorobenzo[a]phenoxazin-5-one (5)

5-Aminopyrimidine-4,6-diol (2.0 g, 13 mmole) 5 reacted with 2,3-dichloronaphthalene-1,4-dione (3.6 g, 15 mmole) 1 to give 11-amino-6-chlorobenzo[a]-8,10-diazaphenoxazin-5-one (mp > 290 °C). UV-Visible (MeOH), λ_{max}(nm) are: 483, 375, 334, 253 and 221; IR (KBr) V_{max}: 3070 (=C-H), 1690 (C=O), 1620 (C=N), 1560, 1470 (C=C of aromatic) cm$^{-1}$; 1NMR (400 MHz, CDCl$_3$): 7.75 (2H, d), 7.20 (2H, d), 7.10 (2H, d), 6.75 (1H, d); Anal. Calcd (found) for C$_{10}$H$_7$ClN$_2$: C, 60.79 (60.85); H, 2.23 (2.28); Cl, 22.43 (22.38); N,4.43 (4.45).

2.3 11-Amino-6-chlorobenzo[a]-8,10-diazaphenoxazin-5-one (7)

5,6-Diaminopyrimidine-4-ol (1.5 g, 12 mmole) 5 coupled with 2,3-dichloronaphthalene-1,4-dione (3.6 g, 15 mmole) 1 to give 11-amino-6-chloro-benzo[a]-8,10-diazaphenoxazin-5-one 7 (mp > 300 °C). UV-Visible (MeOH), λ_{max}(nm) are: 450, 410, 350, 254 and 233; IR (KBr) V_{max}: 3328 (N-H), 1695 (C=O), 1630 (C=N), 1574, 1470 (C=C of aromatic) cm$^{-1}$; 1NMR (400 MHz, CDCl$_3$): 7.75 (2H, d), 7.55 (3H, m), 5.70 (2H, s, (NH$_2$)$_2$); Anal. Calcd (found) for C$_{10}$H$_7$ClN$_2$: C, 56.30 (56.33); H, 2.36 (2.30); Cl, 10.87 (10.94); N, 18.76 (18.82).

2.4. 6-Chloro-11-hydroxybenzo[a]8,10-diazaphenoxazin-5-one (9)

5-Aminopyrimidine-4,6-diol (2.0 g, 16 mmole) 6 reacted with 2,3-dichloronaphthalene-1,4-dione (2.7 g, 15 mmole) to give 6-chloro-11-hydroxybenzo[a]-8,10-diazaphenoxazin-5-one 9 (mp > 300 °C). UV-Visible (MeOH), λ_{max}(nm) are: 520, 490, 420, 327, 304, 253 and 210; IR (KBr) V_{max}: 3428-3120 (br, O-H), 1701 (C=O), 1640, (C=N of aromatic), 1590, 1480 (C=C of aromatic) cm$^{-1}$; 1NMR (400 MHz, CDCl$_3$): 7.75 (2H, d), 7.55 (3H, m), 5.90 (1H, OH); Anal. Calcd (found) for C$_{11}$H$_7$ClN$_2$: C, 56.11 (56.15); H, 2.02 (2.02); Cl, 11.83 (11.85); N, 14.02 (14.08).

2.5 11-Amino-6-chloro-9-thiobenzo[a]8,10-diazenophenoxazin-5-one (11)

5,6-Diamino-2-thiopyrimidin-4-ol (2.0 g, 13 mmole) 10 reacted with 2,3-dichloronaphthalene-1,4-dione (2.83 g, 13 mmole) to give 11-amino-6-chloro-9-thiobenzo[a]8,10-diazaphenoxazin-5-one 11 (mp > 290 °C). UV-Visible (MeOH), λ_{max}(nm) are: 495, 443, 358, 334, 253 and 210; IR (KBr) V_{max}: 3328 (N-H), 1680 (C=O), 1610, (C=N), 1564, 1471 (C=C of aromatic) cm$^{-1}$; 1NMR (400 MHz, CDCl$_3$): 7.75 (2H, d), 7.55 (2H, m), 5.70 (2H, s, (NH$_2$)$_2$), 2.80 (1H, s); Anal. Calcd (found) for C$_{11}$H$_7$ClN$_2$: C, 50.84 (50.93); H, 2.13 (2.17); Cl, 10.72 (10.65); N, 16.94 (17.05); S, 9.64 (9.60).

General Procedure for the Preparation of Complex Derivatives

2.6 9-Hydroxy-7-methyl-14-nitro-6,8-diazenobenzo[a][1,4]benzoxazino[3,2-c]phenothiazine (13)

6-Amino-2-methyl-5-thiopyrimidin-4-ol (2.0 g, 13 mmole) 12 was weighed into a reaction flask. Chloroform (100 mL), DMF (20 mL) and sodium carbonate (1.4 g, 13 mmole) were added and the mixture was refluxed for 1 h. Therefore, 6-Chloro-10-nitrobenzo[a]phenothiazin-5-one (4.2 g, 13 mmole) 3 was added and
the mixture was refluxed for further 7-8 h. The completion of the reaction was monitored by TLC. Chloroform solvent was distilled off, the slurry poured into water and stirred to dissolve the inorganic materials. It was allowed to stand overnight, filtered, air-dried and recrystallized twice from methanol-acetone-DMF mixture. The resulting compound 14-nitro-7-methyl-9-hydroxy-6,8-diazabenz[a][1,4]benzoxazino[3,2-c]phenothiazine 13 was obtained (mp > 320 °C). UV-Visible (MeOH), λmax (nm) are: 780, 741, 557, 498, 493, 357, 354, 353, 351 and 250; IR (KBr) Vmax: 3328 (OH), 1630, (C=N), 1584, 1451 (C=C of aromatic) cm⁻¹, ¹NMR: 7.90 (2H, d), 7.75 (2H, d), 7.20 (2H, d), 7.05 (1H, d), 5.50 (1H, OH), 2.25 (3H, s, CH₃). Anal. Calcd (found) for C₂₃H₁₁N₅O₅S: C, 58.74 (58.80); H, 2.58 (2.63); N, 16.31 (16.27); S, 7.47 (7.50)

2.7 14-Chloro-9-hydroxy-7-methyl-6,8-diazabenz[a][1,4]benzoxazino[3,2-c]phenothiazine (14).

6-Amino-2-methyl-5-thiopyrimidin-4-ol (2.0 g, 13 mmole) 12 condensed with 6,10-dichlorobenzo[a]phenoxazine-5-one (4.0 g, 13 mmole) 5 to give 14-chloro-9-hydroxy-7-methyl-6,8-diazabenz[a][1,4]benzoxazino[3,2-c]phenothiazine 14 (mp > 320 °C). UV-Visible (MeOH) λmax (nm): 536, 439, 417, 413, 344, 342, 339, 338, 335, 278; IR (KBr) Vmax: 3418 (OH), 1625 (C=N of aromatic), 1586, 1464 (C=C of aromatic) cm⁻¹, ¹NMR: 7.75 (2H, d), 7.20 (2H, d), 7.05 (2H, d), 5.50 (1H, OH), 2.25 (3H, s, CH₃); Anal. Calcd (found) for C₂₂H₁₁ClN₅O₅S: C, 58.32 (58.36); H, 2.60 (2.61); Cl, 9.11 (9.16); N, 15.10 (15.05); S, 7.87 (7.90).

2.8 14-Nitrobenzo[a][1,4]benzoxazino[3,2-c]phenothiazine (16).

2-Aminothiophenol (1.0 mL, 8 mmole) of 2-aminothiophenol (1.0 g, 6 mmole) 19 to give 15-amino-8-methoxyl-9-12-14-triazabenzo[a][1,4]benzoxazino[3,2-c]phenothiazine (21).

11-Amino-6-chlorobenzo[a]-8,10-diazaphenoxazin-5-one (5.2 g, 16 mmole) 22 to furnish 14-chloro-9-hydroxy-7-methyl-6,8-diazabenz[a][1,4]benzoxazino[3,2-c]phenothiazine (mp > 320 °C). UV-Visible (MeOH) λmax (nm) are: 749, 580, 480, 334 and 234. IR (KBr) Vmax: 3086 (C=H), 2951 (C=OH), 1630, 1502, 1450 (C=C of aromatic) cm⁻¹; ¹NMR: 7.90 (2H, d), 7.85 (1H, d), 7.75 (1H, d), 7.45-7.42 (4H, m), 3.65 (3H, s). Anal. Calcd (found) for C₂₂H₁₄N₄O₄S, C 61.68; H 2.82; N 13.08; S 7.48

2.12. 15-Amino-8-methoxy-9-12-14-triazabenzo[a][1,4]benzoxazino[3,2-c]phenothiazine (21).
cm⁻¹; ¹NMR: 7.80 (2H, d), 7.55 (1H, d), 7.45 (3H, s), 5.75 (2H, NH₂), 3.65 (3H, s); Anal. Caled (found) for C₂₀H₁₂N₆O₂S, C 59.99; H 3.02; N 20.99; S 8.01.

6,10-Dichlorobenzo[a]phenoxazine-5-one (2.0 g, 8 mmole) 5 condensed with 3-amino-6-methoxyypyridine-2-thiol (1.0 g, 6 mmole) 19 to give 14-chloro-8-methoxyl-9-azabenzo[a][1,4]benzoxazino[3,2-c]phenothiazine (mp > 360 °C). UV-Visible (MeOH) λ_max (nm): 749, 670, 580, 520, 480, 337 and 250; IR (KBr) V_max: 3066 (=C-H), 2951, (C-H, CH₃) 1631 (C=N), 1554 cm⁻¹ (C=C of aromatic) cm⁻¹; ¹NMR: 7.90 (1H, d), 7.80 (1H, d), 7.35 (3H, s), 7.05-7.01 (4H, m), 3.65 (3H, s); Anal. Caled (found) for C₂₂H₁₂ClN₃O₂S, C 63.23; H 2.89; Cl 18.48; N 10.06; S 7.67.

3.0. Antimicrobial Activity.

The antimicrobial properties of the compounds were investigated in the form of the general sensitivity testing and minimum inhibitory concentration (MIC) with respect to freshly cultured targeted organisms. The eight organisms used in the present study were Bacillus subtilis, Bacillus cereus, and Staphylococcus aureus as gram-positive bacteria, Escherichia coli, Pseudomonas aeruginosa and Klebsiellapneumoniae as gram-negative bacteria and Asperigellus niger, Candida albicans as fungi organisms.

Agar diffusion technique [15], was used to determine the antimicrobial activities of the synthesized compounds. 20 mg/mL concentration of each compound was constituted by dissolving 0.04 g of each in 2 mL of dimethyl sulfoxide (DMSO).

This was carried out using agar dilution following the procedure outlined by chemical laboratory Standards Institute (CLSI) [16]. Sterile test tubes were arranged on a test tube rack and 1 mL of DMSO was dispensed into each of them.

4.0. Results and Discussion.

The angular phenoxazines: 6-chloro-10-nitrobenzo[a]phenoxazin-5-one 3; 6,10-dichloro-benzo[a]phenoxazin-5-one 5; 11-amino-6-chloro-8,10-diazabenzo[a]phenoxazin-5-one 7; 6-chloro-11-hydroxy-8,10-diazabenzo[a]phenoxazine-5-one 9 and 11-amino-6-chloro-9-thio-8,10-diazabenzo[a]phenoxazine-5-one 11 were obtained by alkaline condensation of 2,3-dichloronaphthalene-1,4-dione 1 with 2-amino-4-nitrophenol 2, 2-amino-4-chlorophenol 4, 5,6-diaminopyrimidin-4-ol 6, 5-aminopyrimidine-4,6-diol 8 and 5,6-diamino-2-thiopyrimidin -4-ol 10 correspondingly in chloroform-DMF for 5 h. Elemental analysis agreed with their molecular formulas and structures were further supported by spectral data (Scheme 1).
Further condensation of 6-chloro-10-nitrobenzo[a]phenoxazin-5-one 3 with 6-amino-5-thio-2-methylpyrimidin-4-ol 12 and 6,10-dichlorobenzo[a]phenoxazin-5-one 5 with 6-amino-5-thio-2-methylpyrimidin-4-ol 12 gave complex derivatives 9-hydroxyl-7-methyl-14-nitro-6,8-diazabenzo[1,4]benzoxazino [3,2-c]phenothiazine 13 and 14-chloro-9-hydroxyl-7-methyl-6,8-diazabenzo[1,4]benzoxazino [3,2-c]phenothiazine 14. Elemental analysis agreed with their molecular formulas and structures were further supported by the spectral data (Scheme 2).

![Scheme 2](image)

Again further condensation of 6-chloro-10-nitrobenzo[a]phenoxazin-5-one 3, 6,10-dichlorobenzo[a]phenoxazin-5-one 5 and 6-chloro-11-hydroxy-8,10-diazabenzo[a]phenoxazine-5-one 9 each with 2-aminobenzenethiol in alkaline medium gave more complex derivatives; 14-nitrobenzo[a][1,4]benzoxazino[3,2-c]phenothiazine 16, 14-chlorobenzo[a][1,4]benzoxazino[3,2-c]phenothiazine 17 and 15-hydroxyl-12,14-diazabenzo[a][1,4]benzoxazino[3,2-c]phenothiazine 18 (Scheme 3).

![Scheme 3](image)

Again condensation of 3-amino-6-methoxyppyridin-3-thiol 19 with 6-chloro-10-nitrobenzo[a]phenoxazin-5-one 3, 6,10-dichlorobenzo[a]phenoxazin-5-one 5 and 11-amino-6-chloro-8,10-diazabenzo[a]phenoxazin-5-one 7, gave other complex derivatives 20, 21 and 22 respectively (Scheme 4).
Scheme 4

Antimicrobial Activity Evaluation

The compounds were screened in vitro for their antibacterial activities against gram-positive bacteria (B. subtilis, B. cereus and S. aureus), gram-negative bacteria (P. aeruginosa, E. coli and K. pneumoniae) and antifungal activities (C. albicans and Asp. niger) using the agar diffusion techniques. The choice of gram-positive and gram-negative bacteria was because they are easily transmissible through soil, food, water, animals and human [17]. Bacillus subtilis is commonly found in soil and inhibits the guts, considered as a normal guts commensal [18]. It is used in laboratory studies directed at discovering the fundamental properties and characteristics of gram-positive spore-forming bacteria [19].

S. aureus is a bacterium that is frequently found in the human respiratory tract and on the skin. It is the cause of common skin infections (e.g. boils), respiratory diseases (Sinusitis) and food poisoning [20]. E. coli is a gram negative, rod like bacterium that is commonly found in the lower intestine of warm-blooded organisms (endotherms). It is also a normal flora of human body which causes a lot of vancomycin resistance, Enterococci and Methicillin resistant Staphylococcus aureus [21]. It can cause serious food poisoning in humans and are occasionally responsible for product recalls [22]. P. aeruginosa is a gram-negative aerobic cocccobacillus with uni-polar motility that can cause disease such as urinary tract infection, burns, wounds and blood infections in humans, including animals [23]. It is found in soil, water, skin flora and most made environments in most part of the world [24]. The choice of C. albicans and Asp. niger as fungal organisms stems from the fact that they are diploid fungi that grow both as yeast and filamentous cell as well as causal agents of opportunistic oral and genital infections in humans. The choice of Ciprofloxacin and Ketoconazole as clinical standards is due to the fact that they possess broad spectrum of antibacterial and antifungal activities respectively. The results of the antifungal activities tests are shown below in Table 1.
Table 1: Results of Sensitivity Test of Compounds

<table>
<thead>
<tr>
<th>Compd</th>
<th>B. Subtilis</th>
<th>B. Cereus</th>
<th>S. Aureus</th>
<th>P. Aeruginosa</th>
<th>E. coli</th>
<th>K. Pneumoniae</th>
<th>C. Albican</th>
<th>A. Niger</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>+++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>9</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>18</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>20</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>21</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CPFX</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

+ = Slightly Sensitive
++ = Moderately Sensitive
+++ = Highly Sensitive and
- = Resistant

From the result of the sensitivity testing, it was observed that compounds 7, 13 and 18 showed sensitivity to both bacteria and fungi. Compounds 5 and 11 were sensitive to both bacteria and fungi except for K. pneumoniae which was resistant to compound 5. Compound 16 was sensitive to bacteria and fungi except B. cereus, P. aeruginosa and K. pneumoniae. Compound 9 also showed sensitivity to all the bacteria and fungi except E. coli and K. pneumoniae. Compound 14 only showed sensitivity to bacteria. Compound 3 showed sensitivity to one gram-positive bacterium (S. aureus) and one gram-negative bacterium (P. aeruginosa). Compound 17 was slightly sensitive to the bacteria, S. aureus, K. pneumoniae and to the fungi, A. niger. CPFX and KTCN were sensitive to bacteria and fungi respectively.

4.2.2. Results of Minimum Inhibitory Concentration (MIC) (mg/mL) Testing of Compounds.

The compounds which were sensitive to the tested organisms were further diluted to get the MIC results as in Table 2.

Table 2: Results of the Minimum Inhibitory Test

<table>
<thead>
<tr>
<th>Cpd</th>
<th>B. subtilis</th>
<th>B. cereus</th>
<th>S. aureus</th>
<th>P. aeruginosa</th>
<th>E. coli</th>
<th>K. pneumoniae</th>
<th>C. albican</th>
<th>A. niger</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-</td>
<td>0.1905</td>
<td>-</td>
<td>0.0794</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>0.0832</td>
<td>0.100</td>
<td>0.0912</td>
<td>0.0661</td>
<td>0.1585</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>0.0758</td>
<td>0.0457</td>
<td>0.0794</td>
<td>0.1258</td>
<td>0.1047</td>
<td>0.1514</td>
<td>0.0912</td>
<td>0.1514</td>
</tr>
<tr>
<td>9</td>
<td>0.0457</td>
<td>0.0832</td>
<td>0.1585</td>
<td>0.1585</td>
<td>-</td>
<td>-</td>
<td>0.0501</td>
<td>0.1514</td>
</tr>
<tr>
<td>11</td>
<td>0.1659</td>
<td>0.1905</td>
<td>0.1514</td>
<td>0.1148</td>
<td>-</td>
<td>-</td>
<td>0.0794</td>
<td>0.1380</td>
</tr>
<tr>
<td>13</td>
<td>0.1905</td>
<td>0.0871</td>
<td>0.1995</td>
<td>0.1933</td>
<td>0.0871</td>
<td>0.1940</td>
<td>0.1906</td>
<td>0.1585</td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>0.1905</td>
<td>0.1933</td>
<td>0.1913</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>0.0457</td>
<td>0.0955</td>
<td>0.1514</td>
<td>0.1258</td>
<td>-</td>
<td>-</td>
<td>0.100</td>
<td>0.1659</td>
</tr>
<tr>
<td>17</td>
<td>-</td>
<td>0.1514</td>
<td>0.1659</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1738</td>
</tr>
<tr>
<td>18</td>
<td>0.1819</td>
<td>0.0661</td>
<td>0.1380</td>
<td>0.1738</td>
<td>0.1445</td>
<td>0.1538</td>
<td>0.1514</td>
<td>0.0794</td>
</tr>
<tr>
<td>20</td>
<td>0.1805</td>
<td>0.0874</td>
<td>0.1895</td>
<td>0.1933</td>
<td>0.0871</td>
<td>0.1945</td>
<td>0.1916</td>
<td>0.1685</td>
</tr>
<tr>
<td>21</td>
<td>0.1915</td>
<td>0.0771</td>
<td>0.1985</td>
<td>-</td>
<td>0.0891</td>
<td>0.1970</td>
<td>0.1909</td>
<td>0.1595</td>
</tr>
<tr>
<td>22</td>
<td>0.1605</td>
<td>0.0971</td>
<td>0.1885</td>
<td>0.1965</td>
<td>0.0971</td>
<td>-</td>
<td>0.1806</td>
<td>0.1585</td>
</tr>
<tr>
<td>CPFX</td>
<td>0.0212</td>
<td>0.0315</td>
<td>0.0213</td>
<td>0.0323</td>
<td>0.1677</td>
<td>0.0567</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KTCN</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0622</td>
<td>0.1356</td>
</tr>
</tbody>
</table>
From the results of MIC values obtained above, almost all the newly synthesized heterocyclic derivatives were active against the micro-organisms even at very low concentrations. This indicated that the lower the MIC values obtained, the higher the activity of the compound.

Compounds 9 and 16 were most the active against the bacteria *B. subtilis* with the MIC value of 0.0457 mg/mL while compound 7 was most active against *B. cereus* with the same MIC value. For the activity against *B. cereus*, Compounds 7 was the most active followed by compounds 21, 9, 13 and 20 in that order (Table 2). From *S. aureus*, compound 7 is the most active with MIC value of 0.0794 mg/mL followed by compound 5 the value of 0.0912 mg/mL. For the gram-negative bacteria, the activity against *P. aeruginosa, E. coli, K. pneumoniae* were highest for compounds 5, 20 and 7 with corresponding MIC values of 0.0661, 0.0871 and 0.1514 mg/mL respectively. Compounds 13 and 20 have comparable activity against *E. coli* with MIC value far below that of the standard drug CPFX. For the fungal test organisms, Compounds 3, 5 and 14 showed no activity. The activity against *C. albicans* was maximal for Compounds 9 with an MIC value of 0.0501mg/mL whereas Compound 18 showed the highest activity against *A. niger* with an MIC value of 0.0794 mg/mL.

Conclusion

The synthesized derivatives showed varying activities against the cultured bacteria and fungi used. But they were less active when compared with standard antibacterial (Ciprofloxacin) with the exception of compound 13 and 20 which were more active than the referent drug against *E. coli*. It is imperative to note that the standard antifungal drug (Ketoconazole) showed less activity against *C. albicans* and *A. niger* when compared to compounds 9 and 18. We, therefore, conclude that the compounds which possess higher activities should be recommended for further preclinical screening which could be useful in combating the bacterial and fungal infections.

References
