ChemTech

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.9, No.04 pp 261-269, 2016

Piperazine bridged 4-aminoquinoline 1,3,5- triazine derivatives: Design, Synthesis, characterization and antibacterial evaluation

Pathak Prateek^{*1,2}, Anjali Thakur^{1,3}, Parjanya Kr Shukla^{1,4}

¹Department of Pharmaceutical Sciences, Sam Higginbottom Institute of Agriculture Technology & Sciences (Formerly-Allahabad Agricultural Institute) (Deemed-to-be-University), Allahabad-211007, India ²Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University

²Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, NH-58, Meerut - 250005, India

³University Institute of Bio & Pharma Sciences, Chandigarh University, Chandigarh, India

⁴Krishnarpit institute of Pharmacy, Allahabad, Uttar Pradesh, India

A series of novel 4-aminoquinoline 1,3,5-triazine derivatives were synthesized via Six step reactions. All synthesized compounds were characterized by FT-IR, ¹HNMR, ¹³CNMR And Mass spectrometry. The antibacterial activity of 10 synthesized compounds were tested against three gram positive bacteria *Bacillus subtilis* (NCIM-2063), *Bacillus cereus* (NCIM-2156), *Staphylococcus aureus* (NCIM-2079) and four gram negative bacteria *Proteus vulgaris* (NCIM-2027), *Proteus mirabilis* (NCIM-2241), *Escherichia coli* (NCIM-2065), *Pseudomonas aeruginosa* (NCIM-2036) by using ciprofloxacin as reference standard drug. Compound 11i and 11j were found most potent among synthesized derivatives, against all bacterial strains. **Keywords:** 4-Aminoquinoline, *s*-triazines, Antibacterial activity.