Factors are Affecting Tin Released in Canned Beverages

Rida Evalina Tarigan*, Jansen Silalahi, Muchlisym

Faculty of Pharmacy, University of North Sumatera, Medan, Indonesia

Abstract: Factors that affect the dissolution of metals from the cans body can occur and influenced by cans material, duration and conditions of storage, acidity of the contacting foodstuff. The objective of this research is to determine the effect of pH when it released from tin in beverages and to determine the expiration date of it effect. This research method is Causal Comparative, the sample used canned beverages were carbonated beverages, beer and juice. Research conducted on pH canned beverages, label views expired canned beverages, tin assay using atomic absorption spectrophotometer air-acetylene flame at wavelength 286.3 nm. The results showed the differences of average levels on tin released in carbonated canned beverages, beer, and juice, statistically. Tin levels (mg kg\(^{-1}\)) canned beverages expired in 2014 A1, A2, A3, B1, B2, B3, C1, C2, C3 brand respectively are: 5.7676±0.1631, 5.2412±0.3730, 4.4737±0.3063, 3.6623±0.3470, 3.6184±0.3285, 3.5965±0.4033, 4.3421±0.1938, 3.9473±0.2739, 3.8158±0.3874, expired in 2015, respectively: 2.8948±0.6425, 2.8290±0.4491, 2.8070±0.7206, 2.6096±0.7678, 2.5685±0.6815, 2.5000±0.5648, 2.7632±0.3874, 2.7193±0.5259, 2.7124±0.1704. The conclusion is when pH is lower tin released level is higher. When the expired date is longer tin released is lower. Tin levels in canned beverages are eligible that have been set by the WHO / FAO and the European Union according to EC 1881/2006 the maximum limit of 200 mg kg\(^{-1}\) for tin in canned food than beverages must be 100 mg kg\(^{-1}\) including fruit and vegetable juices and 50 mg kg\(^{-1}\) for baby food.

Keywords: Canned Beverages, pH, Expired, Tin, Atomic Absorption Spectrophotometer.

Introduction

Canned beverages is packaged on small metal container to extend the life of the beverage, ready-to-eat, and delicious taste. The metals are contained in packaging materials components like tin that can contaminated into the beverages called corrosion, causing contamination \[^1\]. Factors that affect the dissolution of metals from the cans body can occur and influenced by cans material, duration and conditions of storage, acidity of the contacting foodstuff \[^2,3,4\].

Tin is dangerous if it enters into metabolic system in amount where exceeding the threshold. Excessive consumption of tin in the diet can caused irritation on digestive tract that is characterized by vomiting symptoms, diarrhea, fatigue and headache \[^5\].

The maximum limit for tin in canned foods are 200 mg kg\(^{-1}\) and 100 mg kg\(^{-1}\) for canned beverages, including fruit and vegetable juices and 50 mg kg\(^{-1}\) for baby food \[^6\].

Based on the above, the objective of this research is to examine the factors affect of tin released in canned beverages. Research conducted on pH canned beverages, expired date from packaging label, tin assay using atomic absorption spectrophotometer air-acetylene flame at wavelength 286.3 nm.
Experimental

Apparatus

pH meter, hot plate, Whatman No 42, glassware, atomic absorption spectrophotometer (Hitachi Zeeman-2000) with tin hallow cathode lamp. The main characterstics of equipment for tin determination are: wavelength 286.3 nm, flame: air-acetylene.

Reagents and materials

All reagents were of analytical reagent grade. 65% Nitric acid (E. Merck), stock standard solution (1000 mgL\(^{-1}\)) of tin, deionised water.

Samples

Canned beverages are carbonated beverages with brands A1, A2, A3, beer with brand B1, B2, B3, and juice beverages with brand C1, C2, C3 canned purchased randomly from the market in Medan, North Sumatra, Indonesia. (Each of these beverages brand has two expired time 2014 and 2015). Samples and data nutritional can be seen in Table 1. The research was held in November 2014 in the Faculty of Pharmacy laboratory, University of North Sumatera, Medan, Indonesia.

Expiration

Expired time samples can be seen on the labels of canned beverages and then recorded. Samples and data nutritional can be seen in Table 1.

pH Sample determination

Calibrated meter pH with buffer solution, pipette 10 ml of sample and added into glass beaker, then dipped the electrode into beaker glass [7].

Samples Destruction

Taken as much as 100 ml sample and put into 250 mL erlenmeyer then added 10 ml of 65% nitric acid, evaporated on hot plate until it clear. Poured 50 ml into volumetric flask, and ad deionised water up to line mark. Filtered through whatman filter paper No. 42, and first 5 ml filtrates discarded then next filtrates subsequently keep into the bottle [7,8].

Determination of Tin Levels

Solution test from destruction results measured in atomic absorption spectrophotometer air acetylene flame at wavelength 286.3 nm.

Data analysis

Statistical analysis of the data used two-way ANOVA test by SPSS with 95% confidence level.

Results and Discussion

pH Effect On Tin Released in Canned Beverages

The results showed that in Table 2 that there is significant correlation of pH effect with tin released in canned beverages. The relationship between pH and tin corrosion associated by volta series, the more to the left of an element in volta series, the more prone to get oxidation that occurs at the anode. The conditions in acidic phase or pH <7, can tin dissolution, since H\(^+\) is reduced which occurs at cathode [10]. The lower pH value, corrosion will increase [3, 9,10, 11, 12, 13].
Expiration Effect Of Tin Released In Canned Beverages

The conclusion is there was an effect from tin released on canned beverages. This is because in carbonated canned beverages, beer, and juice which expires in 2014 and the contact time between canned beverages has been longer than cans in carbonated beverages, beer, and juice which expires in 2015. Tin dissolving into a product affected by the duration of shelf life. Its concentration will increases when cans are stored for a long time period. The longer the shelf life, the greater the contact time of the container by the food so that metal migration will also increase [3, 10, 14, 15].

Table 1. Sample and Data Canned Nutrition Beverage, November 2014

<table>
<thead>
<tr>
<th>Canned Beverages</th>
<th>Man. Date</th>
<th>Exp.Date</th>
<th>Shelf Life (months)</th>
<th>Beverages Duration in Cans (months)</th>
<th>Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>26/12/2012 26/12/2014</td>
<td>24</td>
<td>23</td>
<td>Carbonated water, sugar, Aple and orange</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>24/12/2012 24/12/2014</td>
<td>24</td>
<td>23</td>
<td>Carbonated water, sugar, cola, phosphathec acid</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>26/12/2012 26/12/2014</td>
<td>24</td>
<td>23</td>
<td>Carbonated water, sugar, cola, phosphathec acid</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>31/12/2012 31/12/2014</td>
<td>24</td>
<td>23</td>
<td>water, malt, cereals, and hops</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>30/12/2012 30/12/2014</td>
<td>24</td>
<td>23</td>
<td>water, malt, and hops</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>29/12/2012 29/12/2014</td>
<td>24</td>
<td>23</td>
<td>water, malt, sugar, hops, and yeast</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>27/12/2012 27/12/2014</td>
<td>24</td>
<td>23</td>
<td>water, sugar, lychee juice, citric acid, malic acid, vit. C</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>29/12/2012 29/12/2014</td>
<td>24</td>
<td>23</td>
<td>water, sugar, orange juice, vitamin C</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>28/12/2012 28/12/2014</td>
<td>24</td>
<td>23</td>
<td>water, sugar, soursop juice vitamin C</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Effect of pH and Expiration Against Release of Tin In Canned beverages

<table>
<thead>
<tr>
<th>Canned Beverages</th>
<th>pH</th>
<th>Tin (mgkg⁻¹)</th>
<th>Expired Date 2014</th>
<th>Expired Date 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>2.60</td>
<td>5,7676±0,1631</td>
<td>2,8948±0,6425</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>2.70</td>
<td>5,2412±0,3730</td>
<td>2,8290±0,4491</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>2.80</td>
<td>4,4737±0,3063</td>
<td>2,8070±0,7206</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>4.00</td>
<td>3,6623±0,3470</td>
<td>2,6096±0,7678</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>4.10</td>
<td>3,6184±0,3285</td>
<td>2,5658±0,6815</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>4.20</td>
<td>3,5965±0,4033</td>
<td>2,5000±0,5648</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>3.20</td>
<td>4,3421±0,1938</td>
<td>2,7632±0,3874</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>3.40</td>
<td>3,9473±0,2739</td>
<td>2,7193±0,4259</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>3.50</td>
<td>3,8158±0,3874</td>
<td>2,7124±0,1704</td>
<td></td>
</tr>
</tbody>
</table>

Conclusion

The lower pH, the release of tin also become higher in canned beverages. The longer period expired, the release of tin also decreased. The results obtained canned beverages still qualify as permitted by Commission Regulation EC No 1881/2006.
Acknowledgements

The author would like to thank Prof. Jansen Silalahi, M.App.Sc., Apt. as a supervisor and Prof. Dr. Muchlisiam, M.Sc., Apt. as co-supervisor. In pharmaceutical research Laboratory of North Sumatera University, Medan, Indonesia.

References
