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Abstract : The blue green alga Oscillatoria limnetica was isolated from lotic ecosystem. The
isolated microalga species was cultivated in BG-11 media for biomass production and to test
the effect of organophosphorus glyphosate on carbohydrate, total protein, shikimik acid,
flavonoid and superoxide dismutase enzyme.
Adversely depleting of the cellular activities of O. limnetica causing by glyphosate treatments,
leading to a marked decrease in the carbohydrates, proteins, flavonoid and maximum reduction
was 30.980mg/l, 22.39mg/l and 0.48 µg/g dry wt., respectively at 20mg/l of glyphosate.The
shikimik acid pathway was inhibited by glyphosate, leading to an accumulation of shikimic
acid. The shikimic acid content increased and the highest content was 1.38mg/l at 20mg/l. Also,
superoxide dismutase enzyme activity increased along with increasing glyphosate
concentrations and maximum activity was 3.14 units/ml in 20mg/l.
Keywords: pesticide ,glyphosate ,cynophytae ,Oscillatoria limintica, total protein ,shikmik
acide ,SOD, flavonoid.

Introduction

           Large amounts of pesticides enter aquatic ecosystems as a result of agriculture. Adverse effects of
pesticides on non-target plants are of particular concern because of the annual, widespread, and increasingly
worldwide use of these chemicals1. Algae are essential components of aquatic ecosystems. They produce
oxygen and organic substances on which most other life forms depend by providing food for other organisms,
including fish and invertebrates. Toxic chemical effects on algae can directly affect the structure and function of
an ecosystem, resulting in oxygen depletion, and decreased primary productivity 2. Pesticides can affect the
structure and function of aquatic communities through changing species composition of an algal community3.

           Among pesticides, glyphosate-based herbicides (GBHs), such as Roundup (R), are the most frequently
used worldwide, and their residues are common contaminants of ground and surface water4 and in food and
feed5.  This  is  partly  due to pre-harvest  desiccation treatment  of  non-transgenic cereals  with GBHs5, but more
intensively because they are sprayed on the 80% of genetically modified plants that are engineered to tolerate
GlyBH6 and, thus, contain its residues7.

           Glyphosate is the active ingredient of more than 750 different broad-spectrum herbicides8.  As  a
consequence, glyphosate jumped to a leading position among commercial pesticides from the 1970s. GlyBH
use is still increasing every year9. Glyphosate acts on the shikimate pathway in plants through the inhibition of
the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme10, which is involved in the metabolism of
aromatic amino acids.
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           Shikimic acid is a naturally occurring organic compound, more commonly known as its
anionic form shikimate, is an important intermediate in the biosynthesis of aromatic amino acids
(phenylalanine, tyrosine, and tryptophan) of plants and microorganisms  wherein it operates in the biosynthesis
of  not  just  the  three  aromatic  amino  acids  but  also  of  innumerable  aromatic  secondary  metabolites  such  as
alkaloids, flavonoids, lignins, and aromatic antibiotics. Many of these compounds are bioactive as well as
playing important roles in organism defense against biotic and abiotic stresses and environmental interactions
and as such are highly physiologically important11,12.

The biosynthesis of these essential substances are promoted by the enzyme 5-enolpyruvylshikimate-3-
phosphate synthase (EPSPS), the target enzyme of glyphosate. This enzyme catalyzes the transfer of the
enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to
produce enolpyruvyl shikimate-3- phosphate (EPSP) and inorganic phosphate. Glyphosate resembles
the transition state that transforms the reactants into products in the reaction that is catalyzed by EPSP synthase.
Hence glyphosate (as a transition state analog) binds more tightly to EPSP synthase than its natural substrate
and thereby prevents binding of substrate to the enzyme. This binding leads to inhibition of the enzyme and
shuts down the entire pathway. Eventually this causes a deficiency in the production of the essential substances
needed by the organisms to survive13.

Scheme (1-1): The site of inhibition of glyphosate from Dill14.

Material and Methods

Sample collection and identification

           Samples of the freshwater algawere collected from artificial canal around University of  Babylon in Al-
Hilla city by using phytoplankton net15. Experimental cultures were incubated in BG-11 medium16,17 at  cool
white fluorescent lamps (200) μE/m²/s with a light/dark cycle of 16/8 h. and  26± 1°C18. Moreover the cultures
were mildly shaken by hand on alternate days19.

Pesticide

           The organophosphorus pesticide used in this study is the formulation of the herbicide glyphosate
commercially available as Roundup® (containing 480 g active ingredient/L of glyphosate) was obtained from
Al-Farah company, Iraq.

Experimental Design

           The selected algal isolates were batch-cultured in 500 ml Erlenmeyer flasks. Into each flask 200 ml of
liquid culture media, BG11 medium for O.limnetica ,was added. Glyphosate was added to the culture medium
to the final concentrations 5 , 10 , 15 , 20 mg/l. The flasks were cultivated under the conditions described above.
Response of  glyphosate toxicity on O. limnetica  (at the stationary phase) was investigated by determination of

http://en.wikipedia.org/wiki/Transition_state
http://en.wikipedia.org/wiki/Transition_state_analog
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carbohydrate, total protein, shikimik acid, flavonoid and superoxide dismutase enzyme. (All analysis done in
three replicates).

Estimation of Carbohydrate

Alga samples were centrifuged by cooling centrifuge at  the rate  of  5000 r\min for  30 min,  4  C°.  The
supernatant was collected and the carbohydrate determined according to20 method using glucose as a standard.
1ml of each sample/ standard was pipetted into a test tube, followed by addition of 1ml of 5% phenol and 5ml
of 96% sulphuric acid to each tube and shaken well. After 10 minutes, the contents in the tubes were vortexed
and placed in a water bath at 25-30oC for 20 minutes. The absorbance was measured at 490nm. The amount of
total carbohydrate present was calculated using the standard graph prepared21.

Estimation of Protein

After the centrifugation of alga samples by cooling centrifuge at the rate of 5000 r\min for 30 min, 4 C˚,
the supernatant was collected and the protein content of algae biomass was determined using the Bradford dye
binding assay which is a spectroscopic analytical method used to determine the concentration of protein in a
solution22. The Bradford assay relies on the binding of the dye Coomassie Blue G250 to protein. To protein
containing extracts (100 µL) 5 ml of Bradford dye reagent was added and the contents mixed either by
inversion or vortexing. The absorbance at 595nm was measured after 2min and before 1 hour. The quantity of
protein was determined by interpolation from a standard curve prepared using a series of known dilution of
bovine serum albumin23.

Shikimic acid analysis

The shikimic acid concentrations (µg/ml) were evaluated following the method of 24 adapted for
phytoplankton. Briefly, 50 ml of filtered growth media were resuspended in 3 ml of 0.25 M hydrochloric acid
and shaken. Then, the extracts were centrifuged at 25000r/min for 15 min. The supernatant (100µl) was reacted
with a 1 % solution of periodic acid. After 3 h, 1 ml of 1M sodium hydroxide and 0.6 ml of 0.1M glycine were
added to the samples. Absorbance was measured at 380nm25.

Superoxide dismutase activity assay

O.limnetica cells were collected by centrifugation at the rate of 4500 r/min for 20min, then the
supernatant was decanted. The pellets were suspended in 0.9ml phosphate buffer (pH 7.4, 0.1mol/L) and then
ground in an ice-bath for five min. Homogenized solution was centrifuged at 10000 r/min  for 10min at 4∘C and
the supernatant was used as the enzyme source26 for SOD spectrophotometric assay.

SOD activity assay was performed by pyrogallol autoxidation method as described by27.

Reagent:

1. Tris-buffer 50mM, pH 8.2: - this solution contains:
- Tris-base: - dissolve 0.285g of Tris-base in small amount of DW.
- EDTA: - dissolve 0.111g of EDTA in small amount of DW.
After the adjustment of  pH to 8.2, the volume was made up to 100ml by DW.

2. Pyrogallol: - This solution must prepared freshly. Pyrogallol solution was prepared as described below and
the material should be added sequentially. 100ml of DW. , 60µl of HCl and 0.0252g of pyrogallol.

Procedure:

Sample Control
Enzyme source 50 µl
Tris-buffer 1 ml 1 ml
Pyrogallol 1 ml 1 ml
D.W. 50 µl
After the addition of pyrogallol, immediately read the absorbance spectrophotometrically at 420nm
against blank.
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Calculation:

SOD activity =

% inhibition of pyrogallol autoxidation = x 100% , where

ΔA of sample = Absorbance change due to pyrogallol autoxidation in the sample reaction system

ΔAof control = Absorbance change due to pyrogallol autoxidation in the control (without cell lysate)

Determination of Total Flavonoid Content

O.limnetica cells were harvested, washed with distilled water (3 times) and used for the total flavonoid
determination. The algal pellets were extracted with methanol and total flavonoid was determined by a
colorimetric method as described by28. A 0.5 ml of each extract was made up to 1 ml with methanol. Afterwards
0.4 ml of distilled water was added, followed by 0.3 ml of 5 % NaNO2 solution and the mixture was left for 5
min. Thereafter, 0.3 ml of (10%) AlCl3 solution was added and allowed to stand for 6 min. Two ml of (1M)
NaOH solution was added to the mixture and the final volume was adjusted to 10 ml with distilled water. The
mixture was thoroughly shaken and allowed to stand for 15 min. Absorbance of the reaction mixture was read
at 510nm. The concentrations of total flavonoids were determined as quercetin equivalents (mg/g of dry
weight)29.

A = 0.01069 C – 0.001163, r2=0.9998

Where A is the absorbance, C is the flavonoid concentration in µg/g of dry weight.

Statistical Analysis

           General Treatment Structure was used as an experimental design. Data were analyzed to study the
effect of glyphosate on O. limnetica and Least significant difference (LSD) was used to compare the significant
difference between means at p<0.05.

Results and Discussion

Effect of Glyphosate on Carbohydrate Content of O.limnetica.

Carbohydrate content of O.limnetica was decreased when glyphosate concentration increased. The
highest carbohydrate content inhibition 12.223% was recorded at 20mg/l and the lower carbohydrate content
inhibition 1.113% was recorded at 5mg/l. Significant differences were recorded among all treatments (Fig. 1).
This may be due to inhibition of photosynthesis and photochemical efficiency of photosystemІІ in cyanophyta
that resulting from the photooxidation of chlorophyll a, the destruction of accessory pigments to levels below
their protective threshold, together with impaired energy transfer to photosystemІІ reaction centers, as a
consequence of transformational variations to phycobilisomes30.

The finding of this study agreed with31 who usedAnabaena cylindrica, Chlamydomonas reihardii,
Chlorella vulgaris, and Chroococcus turgidus to explore the physiological and biochemical effects of
glyphosate on algae. The common visible symptoms of glyphosate toxicity in all algal cells were bleaching
effect and reduction the contents of carbohydrate. The results highly suggested that glyphosate injured the algal
cells by destruction of photosynthetic pigments and resulted in lowering the contents of carbohydrate in algal
cells. Identical results were stated by32 who suggested that there was a greater reduction in the level of
carbohydrate (44%) observed in Oscillatoria pseudogeminata at the highest concentration (1000ppm) of
carbaryl on the 24th day and the lesser reduction (14%) at 100ppm as compared to control. As the concentration
of pesticide increases, the total carbohydrate level decreased considerably. Also, in previous studies, the
inhibition of carbohydrate production in cyanophyta has been observed at high external concentrations of
glyphosate33,34.
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Fig. 1: Carbohydrate content of O.limnetica at different glyphosateconcentrations (mg/l).
*(p<0.05)Significant differences between control and all treatments.

Effect of Glyphosate on Total Protein Contentof O.limnetica

The total protein content of O.limnetica was less than the control in 5, 10, 15 and 20mg/l. The highest
protein content inhibition 37.45% was recorded at 20mg/l and the lower protein content inhibition 9.52% was
recorded  at  5mg/l.Significant  differences  were  recorded  among  all  treatments  (Fig.  2).  This  may  be  due  to
inhibit the aromatic amino acid synthesis, which results in the inhibition of nucleic acid metabolism, protein
synthesis and the abundance of proteins associated with photosystemІІ and the changes in protein synthesis in
algae grown under stress could be due to changes in gene expression35-37. Also have observed decrease in
protein may be due to the deficiency of protein synthesis or increase in the rate of its degradation of amino
acids, which may be fed to tricarboxylic acid (TCA) cycle through aminotransferases probably to cope up with
high energy demands in order to meet the stress condition38.This study is in agreement with a study by39 which
reported that the soluble and insoluble proteins was decreased in Scenedesmus with increasing glyphosate as
well as soluble proteins were decreased with increasing of glyphosate herbicide to Merismopedia. The same
results were stated by40 who reported that the accumulation protein decreased in Chlamydomonas mexicana in
the presence of 15mg/l acephate and imidacloprid for 12days. Additionally41 observed that the protein content
of Anabaena sp. decreased beyond 2.5μg/ml of chlorpyrifos.

Fig. 2: Protein content of O.limnetica at different glyphosate concentrations (mg/l).
*(p<0.05)Significant differences between control and all treatments.

Effect of Glyphosate on Shikimik acid Contentof O.limnetica

The shikimic acid content showed a significant increase after O.limnetica exposed to 5, 10, 15 and
20mg/l of glyphosate (Fig. 3). This may be due to the inhibition of shikimic acid pathway by glyphosate, by
competing with the enzyme 5-enolpyruvoylshikimate3-phosphate synthease (EPSPS) and that leading to the
accumulation of the substrate shikimate 3-phosphate42-44.The result is in agreement with45 who found that the
shikimic acid content, after glyphosate exposure, showing a significant increase in phytoplankton cells exposed
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to  500  and  1000  µg/l  of  glyphosate.  This  result  also  proves  that  the  shikimic  acid  content  can  based  as  a
biomarker of the effects of glyphosate-based herbicides on phytoplankton communities. Similarly, [46] found
that the cells of Synechocystis 6803, grown in the presence of 1mM and 5mM isopropylamine salt for 96h,
contained 135µg-1 shikimate compared to 53µg-1 in untreated cells.

Fig. 3: Shikimik acid content of O.limnetica at different glyphosate concentrations (mg/l).
*(p<0.05)Significant differences between control and all treatments.

Effect of Glyphosate on Superoxide Dismutase Enzyme Acivity (SOD) of O.limnetica

Toxicity of herbicides may lead to the generation of free radicals and cyanophyta may respond to this
stress by inducing antioxidant defense. SOD enzyme in O.limnetica grown in glyphosate (5, 10, 15 and 20
mg/l) was increased (Fig. 4).The increased activities of SOD in O. limnetica indicated that glyphosate stress
may have stimulated the generation of reactive oxygen species which were reduced by the elevated levels of
these enzymes and helped algal cells to tolerate herbicide stress47,48  reported that the action of glyphosate
formulations may be involved in increasing the production of superoxide anions and therefore in triggering
oxidative stress and antioxidant responses. In compatible with this result49, studied the stress responses of
Anabaena cylindrical for its to sublethal concentrations (0.75-2mM) of bentazon. They found that the activities
of antioxidant enzymes such as superoxide dismutase (SOD) increased in a time and herbicide dose-response
manner were higher than those in the control samples after 72 h. Other herbicides such as glufosinate50  and
paraquat51 , increased SOD activities at 0.5 by 3-4 times over control cultures in the unicellular green alga
Chlorella vulgaris. Similar results were stated by52 who found that enzymatic defences increased when
glyphosate was present in the growth medium of Chlorella kessleri. Also,the enzyme SOD was stimulated
significantly with increasing concentration of malathion as 18%, 38%, 53% and 93% in 25, 50, 75 and 100
µg/ml malathion respectively compared to untreated control53.

Fig. 4: SOD activity of O.limnetica at different glyphosate concentrations (mg/l).
*(p<0.05)Significant differences between control and all treatments.
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Effect of Glyphosate on Flavonoid Content of O.limnetica

            Flavonoid content of O.limnetica was decreased when glyphosate concentration increased. Significant
differences were recorded among all treatments (Fig. 5). This may be due to the blockage of shikimik acid
pathway which leading to a deficiency of significant end products such as lignins, alkaloids, and flavonoid  and
a decrease in CO2 fixation and biomass production in a dose dependent manner54 .The finding of this study
agreed with55 who observed suppressing of the biosynthesis of lipid, protein and flavonoids by different
pesticides in different physiological ways56-76.

Fig. 5: Flavonoid content of O.limnetica at different glyphosate concentrations (mg/l).
*(p<0.05)Significant differences between control and all treatments.

Conclusions

Glyphosate treatments affected the activities in the cyanophyta species by reducing the carbohydrate,
total protein, flavonoid as well as increased shikimik acid and superoxide dismutase enzyme activity.
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