Design and In-Vitro Evaluation of Mucoadhesive Buccal Tablets of Terbutaline Sulphate

V. M. Vaidya¹*, J. V. Manwar¹, N. M. Mahajan¹, and D. M. Sakarkar³

¹S.G.S.P.S. Institute of Pharmacy, Kaulkhed, Akola-444 004, India
²Sudhakarrao Naik Institute of Pharmacy, Pusad-445 204, India

*Email: vm_vaidya717@rediffmail.com

ABSTRACT: Mucoadhesive buccal tablets of terbutaline sulphate were prepared by direct compression method. Carbopol 934P, chitosan, HPMC K⁴M and HPMC Kⁱ⁵M were used as a polymers. Tablets were then evaluated for various physicochemical parameters such as drug content (100 ±0.28%), hardness (7.09 ±0.55 kg/cm²), weight uniformity (100 ±0.35 gm), thickness (3.04 ±0.10 mm), and friability (0.31%). Prepared formulations were evaluated for the release of drug in phosphate buffer pH 6.8 using USP type-II dissolution apparatus. Optimum formulation consisted of terbutaline sulphate (5mg), carbopol 934P (40mg), HPMC K⁴M (40mg), mannitol (13mg), magnesium stearate (1mg) and talc (1mg) showed a maximum drug release after 10 hrs. Mannitol was used to accelerate the release of drug from polymer matrices. Maximum swelling was attained in 5 hrs. The highest bioadhesive strength i.e. 0.277N was possessed by optimum formulation. Decreasing the content of carbopol 934P resulted in decreased in adhesion force. The surface pH of tablets of all batches was between 5 and 7. Good correlation was observed between in-vitro drug release and drug permeation with a correlation coefficient of 0.9928. Results indicate that the release rate from optimum formulation best fitted zero order rate kinetics. In conclusion, in-vitro release profile and mathematical models indicate that this novel delivery system is useful formulation, which can by-pass the first pass metabolism and enhance the release of drug for extended period of time.

Keywords: Mucoadhesive buccal tablet, Terbutaline sulphate, Swelling index, Bioadhesive strength

INTRODUCTION: Terbutaline sulphate [2-(tert-butylamino)-1-(3,5-dihydroxyphenyl) ethanol sulphate] is a selective β₂-adrenergic agent, widely used in the treatment of bronchiol asthma, chronic bronchitis and emphysema¹. The oral bioavailability of drug is only 14.8% and half-life is 3 to 4 hrs². This is because of undergoing of drug to first pass metabolism in liver and gut wall³. Buccal mucosa is an attractive route for systemic delivery of many drugs since it is relatively permeable with a rich blood supply⁴. The mucoadhesive buccal drug delivery system offers several advantages as compare to traditional methods of systemic drug administration⁵. In addition to this, drug can be easily applied and localized to the application site, and can be removed from there if necessary (See Fig. 1). Furthermore, mucoadhesive delivery system via buccal mucosa can by-pass the disadvantages of oral route. Therefore, mucoadhesive delivery system has been considered to be an ideal route for administration of terbutaline sulphate.

In earlier research, attempts have made to develop various mucoadhesive formulations of terbutaline sulphate⁶-⁷. Nevertheless, there was no report of mucoadhesive buccal tablets of terbutaline sulphate. In this research, we have tried to design novel mucoadhesive buccal tablets of terbutaline sulphate which will reduce the first pass metabolism and frequency of dosage.

Firstly, polymers such as carbopol 934P, chitosan, HPMC K⁴M, HPMC Kⁱ⁵M, sodium CMC, mannitol, and magnesium stearate were used in different ratio to examine their effect on the retardation of drug release from tablet matrix. Hydroxypropyl methylcellulose (HPMC) is the most commonly and successfully used hydrophilic retarding agent for the preparation of oral controlled drug delivery systems⁸. The transport phenomena involved in the drug release from hydrophilic...
matrices are complex because the microstructure and macrostructure of HPMC exposed to water is strongly time dependent. Upon contact with the fluid, HPMC swells and finally dissolves slowly. The rate of polymer swelling and dissolution as well as corresponding rate of drug release are found to increase with either higher levels of drug loading or with use of lower viscosity grades of HPMC.

MATERIALS AND METHODS

Materials
Terbutaline sulphate was a generous gift sample from Glenmark Research Center, Sinnar, Nashik. Carbapol 934P, HPMC K₄M, and HPMC K₁₅M were obtained from Colorcon Asia Pvt. Ltd., Goa. Chitosan was obtained from Central Institute of Fisheries and Technology, Cochin, India. Mannitol was procured from Merck Ltd. Mumbai. All other reagents and chemicals used were of analytical reagent grade.

Preparation of Tablets
Polymers like carbapol 934P, chitosan, HPMC K₄M, HPMC K₁₅M, sodium CMC, mannitol, magnesium stearate and other ingredients in different ratios were tried to select optimum formulation. The amount of drug was established according to its clinical use and doses usually contained in some brand drug products. Finally, formulation given in Table No. 1 was selected as optimum formulation. Different components in each formula were mixed by trituration in glass pestle and mortar for 30 min. The mixture was then compressed using 6 mm flat-faced punch using a single stroke-punching machine.

Evaluation of Mucoadhesive buccal Tablets
All the prepared mucoadhesive buccal tablets were evaluated for following official and unofficial parameters.

Drug Content
Three tablets from each batch were taken in separate 100 mL volumetric flasks containing 100 mL of pH 6.8 phosphate buffer and were kept for 24 hrs under constant stirring. The solutions were then filtered, diluted suitably and analyzed at 276 nm using UV- spectrophotometer. The average of three tablets was taken as the content of drug in one tablet unit.

Hardness
The resistance of tablets to shipping or breaking under the condition of storage, transportation, and handling before the uses depends on its hardness. The hardness of tablets of each batch was measured by Monsanto hardness tester. The hardness was measured in terms of kg/cm².

Weight uniformity, Thickness and Friability
The average weights of the formulated tablets were determined using electronic balance. Thickness was measured using screw gauge at different places and average was calculated. The friability of tablets was determined by using Roche friabilator.

In-Vitro Release
The United state pharmacopoeia (USP) type II dissolution apparatus was used to study the release of drug from buccal tablets. The dissolution medium consisted of 900 mL of phosphate buffer pH 6.8. The release was performed at 37 ±0.5°C, at a rotation speed of 50 rpm. One side of buccal tablet was attached to a glass disk with instant adhesive. The disk was put in the bottom of dissolution vessel, so that the patch remained on the upper side of the disk. Samples (5 mL, at each time) were withdrawn at pre-determined time intervals and replaced with fresh medium. The samples were filtered through Whatman filter paper no. 41 with appropriate dilutions with phosphate buffer pH 6.8 and were assayed spectrophotometrically at 276 nm against phosphate buffer pH 6.8 as blank.

Swelling Study
Swelling study was performed on 1% agar gel plates. Twenty tablets were weighed and average weight of each four tablets was calculated. The tablets were placed on the gel surface in five Petri dishes (each containing four tablets), which were placed in an incubator at 37°C. Four tablets were removed at time intervals of 1, 2, 4 and 6 hrs, excess water from the surface was carefully soaked using filter paper, and swollen tablets were weighed. The swelling index was calculated by using formula,

\[
\text{Swelling index} = \frac{\text{wet weight} - \text{dry weight}}{\text{wet weight}} \times 100
\]
Surface pH

Mucoadhesive buccal tablets were subjected to swell on the surface of an agar plate for 2 hrs. The surface pH was measured by using pH paper placed on the surface of the swollen tablets. The mean of two readings was recorded.

In-Vitro Bioadhesive Strength

The term bioadhesion implies attachment of a drug carrier system to a specific biological location. In-vitro bioadhesive strength of tablets was measured using modified physical balance. Porcine buccal mucosa was used as a model membrane and phosphate buffer pH 6.8 was used as moistening fluid. Bioadhesive studies were performed in triplicate and average bioadhesive strength was determined. From the mucoadhesive strength, force of adhesion was calculated, Force of adhesion (N) = (Bioadhesive strength/100) × 9.81

Drug-Excipient Interactions

There is always possibility of drug-excipient interaction in any batch due to their intimate contact. The drug-excipient interaction study was carried out for optimum formulation by using IR-spectroscopic technique, which is one of the most powerful analytical technique that offers possibility of chemical identification. IR-spectra of terbutaline sulphate, HPMC K4M, chitosan and tablets of optimum batch were obtained by KBr disc method.

Short term stability

Tablets of optimum batch were selected for short-term stability study. It was carried out at accelerated condition of 40 ±2°C for a period of three months. For this, ten tablets were individually wrapped using aluminum foil and packed in amber color screw cap bottle and put at above specified condition in incubator for 3 months. After each month tablet sample was analyzed for physical characteristics, mucoadhesive properties, duration of mucoadhesion and in-vitro drug release study and drug content.

Drug Release Kinetics

To analyze the mechanism of the drug release rate kinetics of the dosage form, the data obtained was fitted into a) Zero order kinetics; b) First order kinetics; c) Higuchi’s square root model and d) Korsemeyer and Peppas model. The data obtained from stability study was also subjected to statistical analysis (student’s t-test) in order to find out any significant difference in the drug content of optimum formulation.

RESULTS AND DISCUSSION

An ideal pharmaceutical dosage form for buccal affection treatments would be able to (1) release drug immediately to produce a prompt pharmacological action, (2) remain in oral cavity, and (3) provide a sustained release of enough drug over an extended period of time. Taking into account such requirements, mucoadhesive buccal tablets of terbutaline sulphate were prepared, and were evaluated for various physicochemical parameters.

The percent drug content for all the formulations was found to be 100.00 ±0.28% w/w. Hardness of the tablets was found to be 7.09 ±0.55 kg/cm². Hardness increases with increasing carbopol proportion in the formulation. The average weight of the tablets was found to be 100.00 ±0.35 mg, and the percent deviation was within a specified limit. Hence, all formulations complied with the test for weight uniformity.

All the tablets were circular with no visible cracks, and smooth in appearance with average thickness of 3.04 ±0.10 mm. Further, to strengthen these values, friability test values are also considered. The weight loss less than 1% in friability test is considered as an acceptable value for conventional tablets. It indicates that the tablets can withstand the mechanical shocks reasonably well during their handling. Thus, all the tablets complied with IP standard.

From in-vitro release study of all batches, formulation (F7) containing terbutaline sulphate (5mg), carbopol 934P (40mg), HPMC K4M (40mg), mannitol (13mg), magnesium stearate (1mg) and talc (1mg) was selected as optimum formulation for further study as it had maximum drug release after 10 hrs. The release of drug was decreased with increasing the concentration of HPMC K4M and HPMC K15M as shown in formulation F8 to F14. The drug release was decreased in formulation F3, F4, F5, and F6 containing carbapol 934P in combination with chitosan. It indicates that increase in viscosity of chitosan results in slight decrease in rate of drug. Mannitol was used to accelerate the release of drug from polymer matrices (See Table No. 2, Fig. 2-4).

The swelling properties of all the formulations were studied, and its results indicate that all the formulations possess good swelling indices. The optimum formulation showed maximum swelling index. Maximum swelling
was attained in 5 hrs after which polymers started eroding slowly in the swelling medium. The swelling index of formulations containing carbopol 934P and chitosan was increased with increasing the amount of chitosan (See Table No. 3).

The surface pH of all the formulations was found to be between 5 and 7. Therefore, it reveals that all formulations provide an acceptable pH in the range of salivary pH (5.5-7.0) and they cannot produce any risk of mucosal damage or irritation.

Different kinetic equations were applied to interpret the release rate of drug from mucoadhesive tablets of optimum batch. Results indicate that the release rate from tablets of optimum batch best fitted zero order rate kinetics (See Fig. 5, Table No. 4).

The bioadhesion characteristics were affected by the types and ratios of bioadhesive polymers. The highest bioadhesive force i.e. 0.277N was possessed by optimum formulation. This is because of polymer carbopol 934P, which swells and becomes adhesive upon hydration (See Fig. 6-7).

In the IR spectral study of optimum formulation, prominent peaks of terbutaline sulphate were appeared without interference or the shifting of peaks; it reflects that there is no drug-excipient interaction in optimum formulation.

The stability study was carried out on optimum formulation, and its results reflect that there is no significant change in dissolution profile, drug content and mucoadhesive strength of the formulation. Hence, it concludes that the tablets from this formulation are stable for the period 3 months at 40 ±2 °C (See Table No. 5).

CONCLUSION

Mucoadhesive buccal tablets of terbutaline sulphate were prepared by direct compression method. Different polymers and ingredients in different ratios were tried to select optimum formulation. They were selected on the basis of their effect on the retardation of release of drug from tablet matrix. The formulation consist of terbutaline sulphate (5mg), carbapol 934P (40mg), HPMC K_{4}M (40mg), mannitol (13mg), magnesium stearate (1mg) and talc (1mg) was selected as optimum formulation. Various physicochemical parameters tested for this formulation showed good results (See Table No. 6). From the release study and mathematical models, it conclude that this novel formulation can by-pass the first pass metabolism and enhance the release of drug for extended period of time.

Table No. 1- Composition of Mucoadhesive Buccal Tablet Formulations (mg/tab)

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
<th>F10</th>
<th>F11</th>
<th>F12</th>
<th>F13</th>
<th>F14</th>
<th>F15</th>
<th>F16</th>
<th>F17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terbutaline sulphate</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Carbopol 934P</td>
<td>80</td>
<td>80</td>
<td>40</td>
<td>26.7</td>
<td>20</td>
<td>16</td>
<td>40</td>
<td>26.7</td>
<td>20</td>
<td>16</td>
<td>40</td>
<td>26.7</td>
<td>20</td>
<td>16</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Chitosan</td>
<td>---</td>
<td>---</td>
<td>40</td>
<td>53.3</td>
<td>60</td>
<td>64</td>
<td>---</td>
</tr>
<tr>
<td>HPMC K_{15}M</td>
<td>---</td>
</tr>
<tr>
<td>Mannitol</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Spray dried Lactose</td>
<td>---</td>
<td>13</td>
<td>---</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Magnesium Stearate(%)</td>
<td>1</td>
</tr>
<tr>
<td>Talc (%)</td>
<td>1</td>
</tr>
</tbody>
</table>
Table No. 2 - In-Vitro Drug Release of Mucoadhesive Buccal Tablet Formulations

<table>
<thead>
<tr>
<th>Batch</th>
<th>Release exponent (n)</th>
<th>Kinetic constant (k)</th>
<th>Determination coefficient (R²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>0.6696</td>
<td>1.15</td>
<td>0.9856</td>
</tr>
<tr>
<td>F2</td>
<td>0.657</td>
<td>1.13</td>
<td>0.9889</td>
</tr>
<tr>
<td>F3</td>
<td>0.6635</td>
<td>1.15</td>
<td>0.9821</td>
</tr>
<tr>
<td>F4</td>
<td>0.6126</td>
<td>1.36</td>
<td>0.9229</td>
</tr>
<tr>
<td>F5</td>
<td>0.6058</td>
<td>1.53</td>
<td>0.879</td>
</tr>
<tr>
<td>F6</td>
<td>0.5468</td>
<td>1.59</td>
<td>0.7728</td>
</tr>
<tr>
<td>F7</td>
<td>0.7024</td>
<td>1.11</td>
<td>0.9928</td>
</tr>
<tr>
<td>F8</td>
<td>0.6898</td>
<td>1.91</td>
<td>0.9869</td>
</tr>
<tr>
<td>F9</td>
<td>0.6504</td>
<td>1.25</td>
<td>0.9662</td>
</tr>
<tr>
<td>F10</td>
<td>0.6455</td>
<td>1.34</td>
<td>0.9381</td>
</tr>
<tr>
<td>F11</td>
<td>0.7165</td>
<td>1.24</td>
<td>0.979</td>
</tr>
<tr>
<td>F12</td>
<td>0.6909</td>
<td>1.02</td>
<td>0.9941</td>
</tr>
<tr>
<td>F13</td>
<td>0.6721</td>
<td>1.31</td>
<td>0.9527</td>
</tr>
<tr>
<td>F14</td>
<td>0.648</td>
<td>1.40</td>
<td>0.9357</td>
</tr>
<tr>
<td>F15</td>
<td>0.7167</td>
<td>1.28</td>
<td>0.9695</td>
</tr>
<tr>
<td>F16</td>
<td>0.694</td>
<td>1.20</td>
<td>0.9779</td>
</tr>
<tr>
<td>F17</td>
<td>0.6858</td>
<td>1.81</td>
<td>0.8492</td>
</tr>
</tbody>
</table>

Table No. 3 - Swelling Index of Mucoadhesive Buccal Tablet

<table>
<thead>
<tr>
<th>Batch</th>
<th>% Swelling index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>F1</td>
<td>21.12 ±0.044</td>
</tr>
<tr>
<td>F2</td>
<td>25.00 ±0.25</td>
</tr>
<tr>
<td>F3</td>
<td>40.12 ±0.23</td>
</tr>
<tr>
<td>F4</td>
<td>35.40 ±0.12</td>
</tr>
<tr>
<td>F5</td>
<td>61.51 ±0.11</td>
</tr>
<tr>
<td>F6</td>
<td>60.12 ±0.25</td>
</tr>
<tr>
<td>F7</td>
<td>36.79 ±0.35</td>
</tr>
<tr>
<td>F8</td>
<td>31.77 ±0.44</td>
</tr>
<tr>
<td>F9</td>
<td>28.35 ±0.15</td>
</tr>
<tr>
<td>F10</td>
<td>33.27 ±0.15</td>
</tr>
<tr>
<td>F11</td>
<td>22.40 ±0.47</td>
</tr>
<tr>
<td>F12</td>
<td>33.07 ±0.41</td>
</tr>
<tr>
<td>F13</td>
<td>50.01 ±0.70</td>
</tr>
<tr>
<td>F14</td>
<td>42.10 ±0.20</td>
</tr>
<tr>
<td>F15</td>
<td>26.92 ±0.10</td>
</tr>
<tr>
<td>F16</td>
<td>19.73 ±0.25</td>
</tr>
<tr>
<td>F17</td>
<td>45.31 ±0.24</td>
</tr>
</tbody>
</table>

*Each values represents mean ± S.D (n = 3)
Table No. 4 - Kinetic values for optimum formulation

<table>
<thead>
<tr>
<th>Equation</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero order</td>
<td>1.0000</td>
</tr>
<tr>
<td>First order</td>
<td>0.9967</td>
</tr>
<tr>
<td>Square root t kinetics</td>
<td>0.9421</td>
</tr>
</tbody>
</table>

Table No. 5 – Stability study of optimum formulation

<table>
<thead>
<tr>
<th>Time (Hrs)</th>
<th>%Cumulative drug release*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 Month</td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>1</td>
<td>15.00±0.45</td>
</tr>
<tr>
<td>2</td>
<td>22.00±0.35</td>
</tr>
<tr>
<td>3</td>
<td>30.29±0.24</td>
</tr>
<tr>
<td>4</td>
<td>39.21±0.52</td>
</tr>
<tr>
<td>5</td>
<td>48.8±0.34</td>
</tr>
<tr>
<td>6</td>
<td>54.70±0.10</td>
</tr>
<tr>
<td>7</td>
<td>64.49±0.46</td>
</tr>
<tr>
<td>8</td>
<td>75.39±0.17</td>
</tr>
<tr>
<td>9</td>
<td>85.29±0.41</td>
</tr>
<tr>
<td>10</td>
<td>94.77±0.33</td>
</tr>
</tbody>
</table>

Each values represents mean ± S.D (n = 3)

Table No. 6 - Physical characterization of optimum formulation

<table>
<thead>
<tr>
<th>Physical characteristics</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformity of Weight</td>
<td>99.36±0.24</td>
<td>99.96±0.54</td>
<td>99.99±0.24</td>
<td>100.02±0.46</td>
</tr>
<tr>
<td>Drug content* (%)</td>
<td>100.86±0.15</td>
<td>99.89±0.14</td>
<td>99.83±0.23</td>
<td>97.89±0.15</td>
</tr>
<tr>
<td>Friability (%)</td>
<td>0.37</td>
<td>0.39</td>
<td>0.35</td>
<td>0.32</td>
</tr>
<tr>
<td>Hardness* (Kg/cm²)</td>
<td>7.7±0.23</td>
<td>7.5±0.18</td>
<td>7.3±0.34</td>
<td>7.0±0.84</td>
</tr>
<tr>
<td>Thickness* (mm)</td>
<td>3.21±0.053</td>
<td>3.21±0.05</td>
<td>3.21±0.07</td>
<td>3.21±0.95</td>
</tr>
</tbody>
</table>

Each values represents mean ± S.D (n = 3)
Fig. 1- Overview of attachment site of mucoadhesive tablet

Fig. 2- In-Vitro release profile of tablets, F1, F2-F10

Fig. 3- In-Vitro release profile of tablets, F11 - F14
Fig. 4- In-Vitro release profile of tablets, F2, F15, F16, F17

Fig. 5: In- vitro release profile of optimum formulation, F7

Fig. 6- In-vitro bioadhesion strength of various formulations
REFERENCES

15. European Pharmacopoeia, Council of Europe, Strasbour, 1997; 3rd Edn.: 997-998.
