

International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 0974-4304 Vol.1, No.4, pp 1335-1337, Oct-Dec 2009

Synthesis of 4 - (Substituted benzene)-1(substituted sulfonyl) Semicarbazides in Aqueous Medium

Suhas Pednekar, Anil Kumar Pandey*

Organic Chemistry Research Laboratory, Ramnarain Ruia College Matunga, Mumbai-400019

*Corres.author: pandeyanil20@yahoo.com

Abstract: An expeditious solvent less approach for the synthesis of 4-(Substituted benzene)-1(substituted-sulfonyl) semicarbazides **3a-f** from substituted phenyl semicarbazide **1a-b** with substituted sulfonylurea chloride **2a-c** in water was studied. There is increase in yield and reaction time was reduced. These compounds have been characterized on the basis of elemental analysis, IR, ¹H NMR and M.S.

Key words: Semicarbazides

INTRODUCTION

The well-known classic sulfonvlurea, sulfonyl semicarbazides, sulfonylaminopyrimidines display a hypoglycemic activity [1-3]. The aim of this work is to synthesis of novel sulfonylurea semicarbazide; by a convenient procedure (solvent free condition).Organic synthesis under solvent free condition is of great relevance because of emerging environmental issues [4-The current global awareness in developing 71. environmentally friendly technologies and our philosophy is developing such technologies. It was decided to carry out the reaction in non-hazardous solvent. Performing a reaction in water is the ultimate dream of an organic chemist. This communication describes our effort toward this [8-9].

RESULTS AND DISCUSSION

The sulfonyl semicarbazide derivatives 3a-f were synthesized by refluxing appropriately substituted phenyl semicarbazide 1a-b and substituted sulfonyl chloride 2a-c in THF in the presence of pyridine for 5-6 hours [10] in this method the yields are poor. The crude product was purified by crystallizing the Solid product in appropriate amount of methanol. We now report a modified and convenient procedure for the reaction of substituted phenyl semicarbazide 1a-b with substituted sulfonyl chloride 2a-c using water but not organic solvent. Compound 3a-f formed within 1-1.5 hours in 90-95% overall yield and remarkable advantages because of easier workup.

EXPERIMENTAL

All the melting points are uncorrected and recorded on BÜCHI Melting Point apparatus (Model No. B-540); The IR Spectra were recorded in cm⁻¹ for KBr pellets on Perkin Elmer (Model No.1000). The ¹H NMR Spectra were recorded on Bruker 400 MH_Z spectrophotometer in deuteriochloroform using TMS as internal standard and the chemical shift are expressed in ppm. MS spectra were recorded on Agilent 1100 Mass spectrophotometer.

1336

General Procedure for the synthesis of: 4-(Substitutedbenzene)-1 (substituted sulfonyl) semicarbazides 3a-3f (General method):

The solid mixture of substituted phenyl semicarbazide la-b (5 mmol, 1.0 equiv.) and substituted sulphonyl chloride 2a-c (5mmol, 1.0equiv.) was suspended in 25 ml water. The pH of the suspension was adjusted and was maintained at 8.0 by adding 1 mol/L Na₂CO₃ aqueous solution at room temperature. It took 1.0-1.5 hours for the reaction to complete. Concentrated HCl was added slowly to adjust pH=2.0. The precipitate was collected by filtration, washed with water and dried to afford the title compound. No further purification was needed.

1-Phenyl-4-methylsulphonylsemicarbazide (3a).

mp190-192 °C;

ir(potassiumbromide):3342(SO₂NH), 3204(CONH),1654(C=O),1317

(S=O)cm-¹;¹Hnmrdimethylsulfoxide-d₆): δ2.99(s,3H), 6.96-6.99(t,1H),7.24-7.28(t, 2H),

7.48-7.50 (d.2H), 8.58(s, 1H), 8.66 (s, 1H), 9.21(s, 1H). ms: m/z 228.5 (base peak),229.4. *Anal* Calcd. For $C_8H_{11}N_3O_3S$: C, 41.91; H, 4.84; N, 18.33.Found: C, 41.90; H, 4.82; N, 18.38.

1-Phenyl-4-benzenesulphonyl semicarbazide (3b).

mp 210-212°C ;ir (potassiumbromide):

3355(SO₂NH),3209(CONH),1600(C=O),1337

(S=O)cm¹;¹Hnmr(dimethylsulfoxide-d₆):

 δ 6.92-6.96(t,1H),7.19-7.23(t,2H),7.34-7.36 (d.2H), 7.58-7.62(t, 2H), 7.65-7.69(t, 2H),7.85-7.87(d.2H), 8.34(s, 1H), 8.52(s, 1H), 9.66(s, 1H); ms: m/z 291.2, 290.3(base peak) ,141.

Anal. Calcd. For C₁₃H₁₃N₃O₃S: C, 53.60; H, 4.50; N, 14.42.Found: C, 53.64; H, 4.58; N, 15.32.

1-Phenyl-4-benzyl sulphonyl semicarbazide (3c).

mp 198 °C; ir (potassiumbromide): 3299 (SO₂NH),3130(CONH),1663(C=O),1337 (S=O)cm⁻¹;¹H nmr (dimethyl sulfoxide-d₆): δ 4.44(s, 2H), 6.97-7.00 (t, 1H), 7.26-7.30 (t, 2H), 7.37-7.41(d, 3H), 7.46-7.57(m, 4H), 8.62(s, 1H), 8.69(s, 1H), 9.33(s, 1H); ms: m/z 306 (base peak), 323, 328 . Anal. Calcd. For C₁₄H₁₅N₃O₃S: C, 55.07; H, 4.95; N, 13.76.Found: C, 55.17; H, 4.98; N, 13.86.

Parachloro1-phenyl-4-methylsulphonyl semicarbazide

(3d). mp 263-266 °C; ir (potassium bromide): 3339 (SO₂NH), 3258 (CON-H) 1656 (C=O), 1317(S=O) cm-¹;¹H nmr (dimethyl sulfoxide-d₆): δ 2.99(s, 3H), 7.29-7.31 (d, 2H), 7.54-7.57(d, 2H), 8.71 (s.1H), 8.89 (s,1H), 9.24 (s,1H) ms: m/z 262.5, 264.3. *Anal*.Calcd.for C₈H₁₀N₃O₃SCl: C, 36.44; H, 3.82; N, 15.93.Found: C, 36.48; H, 3.86; N, 16.00.

Para-chloro1-phenyl-4-benzenesulphonyl semicarbazide (3e).

mp 230-233 °C; ir (potassiumbromide): 3332(SO₂NH),3299(CON-H),1678 (C=O),1320 (S=O) cm-¹; ¹Hnmr(dimethylsulfoxide-d₆): δ 7.25-.28(d,2H),7.40-7.42(d,2H), 7.57-7.61(t, 2H),), 7.64-7.68(t, 1H), 7.83-7.86 (d, 2H), 8.47(s,1H), 8.75(s, 1H), 9.71(s,1H). ms:m/z 324.1, 326.1. *Anal*.Calcd.For C₁₃H₁₂N₃O₃SCl: C, 47.93; H, 3.71; N, 12.90 Found: C, 47.98; H, 3.75; N, 13.02.

1-Phenyl-4-benzil sulphonyl semicarbazide (3f).

mp228-230 °C ;ir(potassiumbromide): 3347(SO₂NH),3253(CON-H),1693(C=O),1317(S=O)cm⁻¹; ¹Hnmr. (dimethyl sulfoxide-d₆) δ 4.44(d, 2H), 7.31-7.33(d, 2H), 7.36-7.41(m, 3H), 7.44- 7.46(m, 2H), 7.55-7.58(d, 2H), 8.76(s, 1H), 8.91(s, 1H), 9.36(s, 1H), ms: m/z 340 (base peak), 362.2, 364.1, *Anal*.Calcd.For C₁4H₁₄N₃O₃SCl: C, 49.49 H, 4.15; N, 12.37 Found: C, 50.02.; H, 4.20; N, 12.70.

CONCLUSION

In conclusion, the water serves as an excellent medium for the condensation of phenyl semicarbazide with sulphonyl chloride for the synthesis of sulphonyl semicarbazide.

ACKNOWLEDGEMENT

We wish to thank the sophisticated analytical instrument facility Torrent research centre Ahemedabad India for ¹H nmr and mass spectral analysis and to the Principal Ramnarain Ruia college Matunga Mumbai for the facility to carry out this work.

REFERENCES

[1] C.Rufer, H.Biere, O,Loge, and E.Schroder *J.Med. chem.***1974**, 17,708.

[2] Clemens Rufer, Wolfgang Losert *J.Med. chem.***1979**, 22,750.

[3] Amuller; Walter; Weyer; Rudi; Heerdt United states Patent 3,939,269, **1976**

[4] K. Tanaka and F.Toda, Chem. Rev. 2000, 100, 1025

[5] A, Loppy, a. petit, J. Hamelin, F, Texier-Boulet, p. Jacquault and D.Mathe, *Synthesis*, **1998**, 1213.

[6] R.S Varma, Pure appl..Chem.,2001,73,193.

[7] I. Oussaid ,N.Thach and A Loupy, *Tetrahedron lett.*, **1997**, 38, 2451.

[8] Xiaohu Deng, Neelakanda S. Mani The Royal Society of chemistry **2006**.

[9] U. R. Kalkote, V. T. Sathe, R. K. Kharul, P. Chavan,

T.Ravindranathan Tetrahedron Letter 1996,37, 6785

[10] Hunter B A. US patent 3,152,176, 1964
