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Abstract: Hemoglobin degradation pathway is the major source of nutrition of Plasmodium falciparum.
Plasmepsin II is the key enzyme in hemoglobin degradation with two catalytic aspartates D34 and D214. The
energy refined structure of Plasmepsin II of Plasmodium falciparum modeled by modeller 9v8 using PDB entry
1PFZ as template. Ligsitecsc program revealed three potential ligand binding sites where the pkt-364 is found to be
more favorable containing critical aspartic residues (D34 and D214). Urea and its derivative, benzamide, are
considered as seed molecules for de-novo generation of structurally complimentary lead molecules.
LigbuilderV1.2 growing strategy was used for de-novo generation with 10 population cycles for each seed
molecules. Binding energies were examined by Quantum3.3.0 for all the designed ligand molecules and the best
molecules with -20KJ/mole and -18KJ/mole were found with some undesired activities. Iterative in-silico
optimization of the examined molecules were done and finally de-novo generated N - [ (R) – hydroxy { [ 2 - ( 1 ,
3 – oxathiol – 4 –yl ) phenyl ] amino } methyl ] acetamide and N - ( 2 – amino – 2 – oxoethyl ) – 3 - ( 1 - { [ 2 -
( methylamino ) ethyl ] (phenyl) amino } vinyl ) benzamide were found as the best fit over rule of 5 and other
ADME parameters. Binding studies suggest the direct interaction of designed molecules with catalytic aspartates
(D34 and D214) of Plasmepsin II having 2HB and 1 ionic bond and good number of VdW interactions. Thus, the
designed molecules could possibly inhibit the action of PM II preventing the degradation of hemoglobin and
thereby kill the parasite by starvation.
Keywords: Malaria, Plasmodium falciparum, Aspartic protease, Plasmepsin II.
Abbreviations: D34 and D214: Aspartic acid 34 and Aspartic acid 214 respectively, PM II: Plasmepsin II, VdW:
Vander wall, IC50: Inhibitory concentration.

Introduction:
Malaria remains a human disease of global

significant and a major cause of high infant mortality
in endemic nations (1) and nearly all malarial deaths are
caused by Plasmodium falciparum, a protozoan
parasite that lives in human red blood cells during its
asexual life cycle. Drug resistance in P.falciparum is
an enormous problem and new antimalarial agents
focussing towards novel mechanism of action (2) are

needed desperately. In the effort to develop new
treatments for malaria, hemoglobin degradation by
aspartic proteases in acidic digestive vacuole of the
parasite has generated substantial interest because it is
a major metabolic pathway of the parasite and is
believed to be essential for the survival of the
parasite(3).

PM  II  is  the  best  studied  member  of  aspartic
proteases(4) responsible for initial hemoglobin
degradation in intraerythrocytic Plasmodium
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falciparum and it has become an attractive drug target
for novel therapeutic compound to treat malaria(5).
Research regarding its importance in the P.falciparum
metabolism and life cycle, makes it the target of choice
for structure based drug designed (6).

PM II is translated as inactive zymogen where
a large shift between the N-domain and the Central and
the C-domain of proplasmepsin II opens the active site
cleft, preventing the formation of a functional aspartic
proteinase active site (7). Activation of PM II involves
the cleavage of its N-terminal part and this transition
(maturation) brings about a domain shift in the
enzyme’s N-domain, which enables the formation of
the  catalytic  site.  The  catalytic  residues  are  D34  and
D214 one of which is protonated while the other is
negatively charged in the digestive vacuole (pH≈5)
where hemoglobin cleavage takes place (8). PM II has a
remarkable stringent specificity towards native
hemoglobin (3) and is involved in the early steps of
hemoglobin degradation. They are able to recognize
intact hemoglobin and make an initial cleavage in the
β-helix of the hemoglobin α-chain between Phe33 and
Leu34. The cleavage is believed to unravel the globin
chain, facilitating subsequent proteolytic cleavages (4).
(Figure 1 represents the hemoglobin degradation
pathway in P. falciparum).

Methodology:
Energy  refinement  of  PM  II  was  modeled  by

Modeller 9v8 (9) using PDB entry 1PFZ as a template.
The predicted models were evaluated for geometry,
stereochemistry checks and energy distribution using
PROCHECK (10). The models were systematically
analyzed using ProSA (11, 12) for various structural
properties and the best modeled structure containing
94.6% residues in the core region of the
Ramachandran plot was selected as the docking target
enzyme.

Three potential binding sites of modeled PM II
were revealed by Ligsitecsc (13) program where pkt-364
is found to be the most favorable and conserved region
containing critical aspartic residues (D34 and D214)
and has a better binding affinity.

In this study, urea moiety and its derivative,
benzamide, are considered as seed molecules for the
de-novo generation with a final output of twenty
structurally complimentary potential lead molecules
using LigbuilderV1.2 (14).  All  the  twenty de-novo
designed and selected ligand molecules were docked
into the target enzyme using Quantum3.3.0 (15). The
ligands block the active site by directly interacting
with either one or both of the catalytic aspartates, D34
and D214. The binding energies for all the twenty
designed ligand molecules as examined by

Quatum3.3.0 ranges between -26 to -7KJ/mole and -21
to -11KJ/mole (Result summarized in table I and II).

Lead optimization:
Bioisosteric replacement concept was

employed over the examined lead molecules to
circumvent undesirable ADME profiles and
simultaneously optimizes lead compounds. Finally de-
novo generated derivatives in-silico optimized N -  [
(R)  –  hydroxy  {  [  2  -  (  1  ,  3  –  oxathiol  –  4  –  yl  )
phenyl ] amino } methyl ]acetamide and N-(2-
amino-2-oxoethyl)-3-(1-{[2-(methylamino)ethyl]
(phenyl)amino}vinyl) benzamide were found as the
best fit over rule of five and other ADME parameters.

Binding studies suggest the direct interaction
of the designed molecules with the catalytic aspartates
dyads (D34 and D214) of PM II with the maximum
IC50 value of 2.67e-004 mole/L and 6.4e-006 mole/L
for N - [ (R) – hydroxy { [ 2 - ( 1 , 3 – oxathiol – 4 – yl
) phenyl ] amino } methyl ] acetamide and N -  (  2  –
amino – 2 – oxoethyl ) – 3 - ( 1 - { [ 2 - ( methylamino
)  ethyl  ]  (  phenyl  )  amino  }  vinyl  )  benzamide
respectively.

Result and Discussion:
Five modeled structures of PM II generated by

Modeller 9v8 contains 93% to 94% residues in the
core region of Ramachandran plot and the overall G-
factors ranges between -0.09 to -0.04. Z-scores were
within the range and energy functions of the residues
were at minimum as analyzed by ProSA.

Binding pocket determination of modeled PM
II by Ligsitecsc program revealed three potential
binding sites pkt-364, pkt-29 and pkt- 15 where pkt-
364 was found to be the major  cleft  with critical  D34
and D214.

Ligand docking predicted the binding of
generated derivatives at the substrate binding cleft
(Figure 3(i) & 3(ii), Figure 4(i) & 4(ii)) with negative
interaction energy and efficient binding.
Pharmacokinetic properties analysis of the optimized
lead  molecules  (Result  summarized  in  Table  III(a)  &
III(b)) performed by MolsoftLLC program predicted
minimum number of Hydrogen bond acceptors,
Hydrogen bond donors and molecular weight of
266.07Dalton and 352.19Dalton for urea derived
ligand and benzamide derived ligand respectively. The
partition co-efficient CLogP and Solubility CLogS
were found to be minimal for both the designed
ligands. These observed properties suggested good
absorption and easy transportation of the molecule
across the membrane, which according to the rule of
five; a compound could possibly behave as a drug.
Pharmacodynamically, the designed molecules N-[(R)-
hydroxy{[2-(1,3-oxathiol-4-yl)phenyl]amino}methyl]
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acetamide, exhibited 2 of 6 possible pharmacological
effects (Uric acid excretion stimulant and Diuretic) and
2 of 3 side effects and toxicity (Embryotoxicity and
Teratogen). Whereas, N - ( 2 – amino – 2 – oxoethyl )
–  3  -  (  1  -  {  [  2  -  (  methylamino  )  ethyl  ]  (  phenyl  )
amino } vinyl ) benzamide designed molecule was
found to exhibit 1 of 6 possible pharmacological
effects (Vasodilator) and 1 of 3 possible side effects
and toxicity (Embryotoxicity). The pharmacodynamic
properties were calculated using PASS program(16) at
Pa>Pi.

Figure 1: Schematic representation of hemoglobin
degradation pathway in P.falciparum.

Table I: Quantum 3.3.0 output for urea derived ligands.
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Figure 2: Representation of Ramachandran plot for modeled PM II.
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Table II: Quantum3.3.0 output for benzamide derived ligands.

Figure 3(i): Surface representation of PM II in complex with N-[(R)-hydroxy {[2-(1, 3-oxathiol-4-yl) phenyl]
amino} methyl] acetamide.
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Figure 3(ii): Ribbon representation of PM II in complex with N-[(R)-hydroxy {[2-(1, 3-oxathiol
-4-yl) phenyl] amino} methyl] acetamide.

Figure 4(i): Surface representation of PM II in complex with N-(2-amino-2-oxoethyl)
-3-(1-{[2-(methylamino)ethyl](phenyl)amino}vinyl)benzamide.
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Figure 4(ii): Ribbon representation of PM II in complex with N-(2-amino-2-oxoethyl)
-3-(1-{[2-(methylamino)ethyl](phenyl)amino}vinyl)benzamide.

Table III(a): Molsoft LLC output for N - [ (R) – hydroxy { [ 2 - ( 1 , 3 – oxathiol – 4 – yl ) phenyl ]
amino } methyl ] acetamide.

Molecular formula: C12 H14 N2 O3 S
Molecular weight: 266.07
Number of HBA: 4
Number of HBD: 3
MolLogP : 2.17
MolLogS : -3.31 (in Log(moles/L)) 130.85 (in mg/L)
MolPSA : 62.57 A2

MolVol : 244.51 A3

Number of stereo centers: 1

TableIII(b):Molsoft LLC output for N-(2–amino–2–oxoethyl)–3–(1-{[2-( methylamino) ethyl](phenyl)
amino}vinyl) benzamide.

Molecular formula: C20 H24 N4 O2
Molecular weight: 352.19
Number of HBA: 3
Number of HBD: 4
MolLogP: 2.01
MolLogS: -4.29 (in Log (moles/L)) 18.09 (in mg/L)
MolPSA: 74.55 A2

MolVol: 374.05 A3

Number of stereo centers: 0
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Drug Likeness model score: -1.29

Figure 5(i): Representation of drug likeness score
of N - [ (R) – hydroxy { [ 2 - ( 1 , 3 – oxathiol – 4 –
yl ) phenyl ] amino } methyl ] acetamide.

Drug Likeness model score: -0.31

Figure 5(ii): Representation of drug likeness
score of N - ( 2 – amino – 2 – oxoethyl ) – 3 - ( 1 -
{[ 2 - ( methylamino ) ethyl ] (phenyl) amino}
vinyl) benzamide.

Figure 6(i): Molecular structure of N - [ (R) – hydroxy { [ 2 - ( 1 , 3 – oxathiol – 4 – yl ) phenyl ] amino}
methyl ] acetamide.

SMILES Notation :( O=C (NC (O) Nc1ccccc1C=2SCOC=2) C)
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Figure 6(ii): Molecular structure of N - ( 2 – amino – 2 – oxoethyl )– 3 - ( 1 - { [ 2 - (methylamino) ethyl]
(phenyl)amino}vinyl)benzamide.

SMILES Notation: O = C (N) CNC (=O) c1cccc (c1) C (\N (c2ccccc2) CCNC) = C

Conclusion:

Selective blockade of PM II impairs
hemoglobin degradation and leads to parasite death.
Two potent inhibitors N-[(R)-hydroxy{[2-(1,3-
oxathiol-4-yl)phenyl]amino}methyl]acetamide and N-
(2-amino-2-oxoethyl)-3-(1-{[2- (methylamino)ethyl]
(phenyl)amino}vinyl)benzamide were designed de-
novo to inhibit the action of PM II. Our results,
suggested that, these two de-novo designed
compounds could act as a potential drug and compete
with the hemoglobin for the substrate binding site,
hence prevents the process of hemoglobin degradation
pathway by PM II.
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