

International Journal of ChemTech Research CODEN(USA): IJCRGG ISSN : 0974-4290 Vol. 3, No.3, pp 1556-1562, July-Sept 2011

Synthesis and biological activity of new 3chloro-4-(3-substituted phenyl)-1-(5-((2methyl-1H-benzo[d]imidazol-1-yl) methyl)-1, 3, 4-thiadiazol-2-yl) azetidin-2-one

Mahavir Chhajed¹*, A. K. Shrivastav², Atika Jain³, Anil Kharia⁴

¹Department of Pharmaceutical Chemistry, Suresh Gyan Vihar University, Jaipur (R.J.) India

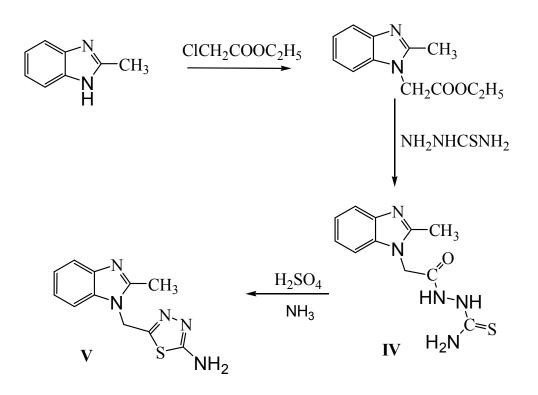
 ²Director, Anand College of Pharmacy, Keetham Lake Road, Agra (U.P.) India
³Devi Ahilya College of Pharmacy, Jaora Compound,Chhawani, Indore (M.P.) India
⁴Department of Pharmaceutical Chemistry, Modern Institute of Pharmaceutical Sciences, Gram Alwasa, Sanwer Road, Indore- (M.P.) India

*Corres.author: mahavirchhajed @rediffmail.com Contact No: 9479450505, 9300171071, 0731-3220886, 3221886.

Abstract: A series of novel N-(substituted benzylidene)-5-((2-methyl-1H-benzo[d]imidazol-1-yl) methyl)-1, 3, 4-thiadiazol-2-amine (VIa-e), and 3-chloro-4-(4-substituted phenyl)-1-(5-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1,3,4-thiadiazol-2-yl)azetidin-2-one (VIIa-e) were synthesized and studied for their potential antimicrobial activity. All the synthesized compounds were in good agreement with elemental, IR, ¹H-NMR and MS spectra.

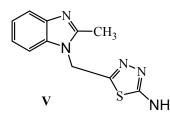
Keywords: Benzimidazoles, 1, 3, 4-thiadiazoles, Antimicrobial activity.

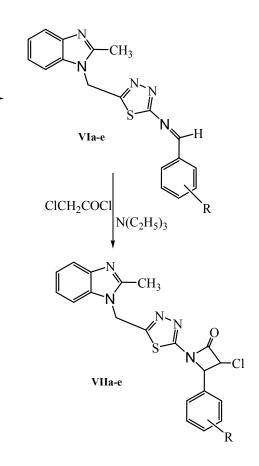
1. Introduction


Drug resistance is a steadily increasing process that is reaching alarming level in the treatment of infectious diseases caused by pathogenic bacteria, fungi, parasites and viruses. Over the past few decades, steadily increasing drug resistance in the treatment of infectious disease pose a serious problem in antimicrobial therapy and necessitates continuing research into novel classes of antimicrobials.¹ The 1, 3, 4-thiadiazole and its derivatives possesses wide variety of activities²⁻⁷ and a number of researchers have reported antimicrobial activities in 2, 5-disubstituted-1, 3, 4-thiadiazoles.⁸⁻¹⁰ Benzimidazoles posses a number of interacting biological activities such as antitubercular,¹¹ anticancer,^{12,13} anthelmintic,¹⁴ antiallergic,¹⁵⁻¹⁶ antioxidant,¹⁷⁻¹⁹ antihistaminic,²⁰ and antimicrobial activity.²¹⁻²⁷

Keeping the Pharmacological activity of 1,3,4thidiazoles and benzimidazoles it was thought worthwhile to synthesized, 5-[(2-methyl-1*H*-benzimidazole-1-yl)methyl]-1,3,4-thiadiazol-2-amine (**VI**a-e), and 3chloro-4-(3-Substituted phenyl)-1-(5-((2-methyl-1Hbenzo[d]imidazol-1-yl) methyl)-1, 3, 4-thiadiazol-2-yl) azetidin-2-one (**VII**a-e),similarly compounds are tested for their biological activity.

2. Results and Discussions


We are starting our research envisaged by synthesizing 5-[(2-methyl-1H-benzimidazol-1-yl) methyl]-1, 3, 4thiadiazol-2-amine from the 2-Methyl-1Hbenzimidazole II which was prepared according to the reported method.²⁸ further on N-ethoxylation with ethylchloroacetate in the presence of anhydrous K₂CO₃ in dry acetone gave ethyl (2-methyl-1H-benzimidazol-1-yl) acetate III which on treatment with thiosemicarbazide resulted in the formation of 2-[(2methyl-1H-benzimidazol-1-yl)acetyl]-hydrazinecarbo thioamide IV. Dehydrated annulation of compound IV with conc. H₂SO₄ followed by NH₃ treatment yielded 5-[(2-methyl-1H-benzimidazol-1-yl) methyl]-1, 3, 4thiadiazol-2-amine V which were synthesis by adopting known method.²⁹


The compound V is converted to Schiff base by treatment with substituted benzaldehyde in presence of sodium acetate and few drops of sulphuric acid resulted in the formation of N-(substituted benzylidene)-5-((2-methyl-1H-benzo[d]imidazol-1-yl) methyl)-1, 3, 4-thiadiazol-2-amine (VIa-e), which on treatment with chloroacetylchloride in presence of triethylamine in alcoholic solution vielded 3-chloro-4-(4-substituted phenyl)-1-(5-((2-methyl-1H-benzo[d] imidazol-1-yl)methyl)-1,3,4-thiadiazol-2-yl)azetidin-2one (VIIa-e), the analytical data confirming the formation of molecules. IR (KBr, cm⁻¹): 3195.6 (N-H str of Schiff base), 3052.9 (Ar C-H str), 2909.2 (aliphatic C-H str), 1647.5 (C=N of thiadiazole), 1614.9 (C=N of benzimidazole ring), 1569.9 (C=N str. of Sciff base), 1603 and 1505.8 (Ar C-C str), 821.9 (C-H def disubstituted benzene ring), 738.3 (C-S of thiadiazole nucleus); ¹H NMR (300 MHz, DMSO-d6, TMS, δ ppm): 2.3 (s, 3H, CH₃), 4.7 (s, 2H, CH₂), 8.2 (s, 1H, CH of benzylidine imine) 7.1-7.8 (m, 9H, benzimidazole and benzylidine); Mass spectra and elemental analysis also support the structure elucidation of molecules.

Scheme-1

RC₆H₄CHO CH₃COONa

Antimicrobial activity

The antimicrobial properties of the synthesized compounds were investigated against bacterial strains *i.e.*, Gram negative; Proteus mirabilis (MTCC-425), aeruginosa (MTCC-424), Pseudomonas Gram (MTCC-619), positive; Bacillus subtilis and Staphylococcus aureus (MTCC-96) and fungal strains i.e., Aspergillus niger (MTCC-1344) and Candida albicans (MTCC-227) using disk diffusion method³⁰⁻³¹ (Table-I). The standard drugs used for comparison were norfloxacin and clotrimazole for antibacterial and antifungal studies respectively. Nutrient agar, Czapek yeast extract agar and malt yeast agar with pH 7.0 was employed as culture media for antibacterial. antimycotic evaluation against Aspergillus niger and Candida albicans respectively.³² For antibacterial studies, incubation was carried out at 37±1°C for 48 h except for Bacillus subtilis where incubation was carried out at 26±1° C for similar time period. Incubation conditions for Aspergillus niger and Candida albicans was 25±1°C for 72 h.

The cell density of each inoculum was adjusted with hemocytometer in order to procure a final concentration of approximately 105 CFU/mL and 0.5 of the culture of test organism was inoculated and uniformly spread over the agar surface using a sterile L-shaped glass rod. Solutions of the test compound (100 μ g/mL) were prepared by dissolving in dimethyl formamide (DMF). The sterile filter paper disc (8 mm diameter) were moistened with the test compounds solution in DMF of specific concentration (100 μ g/disc) placed on the agar culture plates that had been previously inoculated with specific microorganisms. All the tests were performed in triplicate, and inhibition zones were measured. The activity index of synthesized compounds has been calculated using formula.³³

Activity index =

Inhibition zone of sample

Inhibition zone of standard

By careful study of the antimicrobial activity data and activity index it can be observed that most of the synthesized compounds possess significant antibacterial and antifungal activity. The results of antimicrobial activity have been reported in Table-I.

Table I- Antimicrobial activity [#]	of the synthesized	compounds using	disc-diffusion method

Com	Zone of inhibition in millimeter ^a (Activity index)						
Com pd	Antibacterial activity				Antifungal activity		
	S.aureus	B. subtilis	P. mirabilis	P. aeruginosa	A. niger	C. albicans	
VIa	13 (0.54)	11 (0.65)	12 (0.55)	11 (0.55)	13 (0.62)	14 (0.61)	
VIb	15 (0.63)	12 (0.72)	13 (0.59)	13 (0.65)	13 (0.63)	12 (0.48)	
VIc	15 (0.63)	14 (0.82)	13 (0.59)	15 (0.75)	13 (0.62)	13 (0.62)	
VId	14 (0.58)	12 (0.72)	14 (0.64)	15 (0.75)	13 (0.62)	14 (0.61)	
VIe	14 (0.58)	15 (0.88)	14 (0.64)	13 (0.65)	11 (0.52)	12 (0.48)	
VIIa	14 (0.58)	15 (0.88)	13 (0.59)	12 (0.6)	13 (0.62)	13 (0.62)	
VIIb	14 (0.58)	13 (0.76)	15 (0.68)	16 (0.8)	14 (0.67)	14 (0.61)	
VIIc	17 (0.71)	14 (0.82)	16 (0.73)	17 (0.85)	15 (0.71)	17 (0.74)	
VIId	14 (0.58)	13 (0.76)	15 (0.68)	14 (0.7)	14 (0.67)	15 (0.65)	
VIIe	16 (0.67)	14 (0.82)	16 (0.73)	16 (0.8)	15 (0.71)	14 (0.61)	
Nfc	24	17	22	20	NT	NT	
Ctz	NT	NT	NT	NT	21	23	

^aconcentration of test compounds and standard 100 µg/8 mm disc

(Activity index) = Inhibition zone of the sample / Inhibition zone of the standard,

Nfc: Norfloxacin, Ctz: Clotrimazole.

NT: Not Tested

#Microbial strains were procured from Institute of Microbial Technology (IMTECH) Chandigarh, INDIA.

3. Experimental

The melting points of the compounds were determined in open capillaries using Thermonik Precision Melting point cum Boiling point apparatus (C-PMB-2, Mumbai, India) in the Celsius scale and are uncorrected. IR spectra of compounds were recorded using Shimadzu FTIR-8400s spectrophotometer on ¹H-NMR spectra were recorded in KBr discs. CDCl₃/DMSO-δ6 390 on Varian EM Spectrophotometer using TMS as internal standard and electro spray mass spectra were recorded on Micromass Quattro II triple-quadrupole mass spectrometer (Methanol) (Micromass, Manchester, UK). The homogeneity of the compounds was established by TLC on silica gel plate. The spots were visualized in iodine vapor.

General procedure for synthesis of N-substituted benzylidene-5-((2-methyl-1H-benzo[d]imidazol-1-yl) methyl)-1, 3, 4-thiadiazol-2-amine (VIa-e): The compound V (0.01 mol) was dissolved in ethanol (100 mL), sodium acetate (0.8 g, 0.02 mol), benzaldehyde

(2.1mL) and two drops of concentrated sulphuric acid was added and the reaction mixture was heated under reflux for 16 h. The excess of solvent was distilled-off under reduce pressure. The residue so obtained was washed with diethyl ether and recrystallized from methanol. Similarly, all the compounds (VIa-e) were prepared by adopting this procedure.

N-benzylidene-5-((2-methyl-1H-benzo/d/imidazol-1-

yl) methyl)-1, 3, 4-thiadiazol-2-amine (VIa): Yield 66%, m.p. 178-179 °C, R_f=0.53, λ_{max} 235 nm; IR (KBr, cm⁻¹): 3052.9 (Ar C-H str), 2909.2 (aliphatic C-H str), 1647.5 (C=N of thiadiazole), 1614.9 (C=N), 1603-1505.8 (Ar C-C str), 821.9 (C-H def disubstituted benzene ring), 738.3 (C-S of thiadiazole nucleus); ¹H NMR (300 MHz, DMSO-d6, TMS, δ ppm): 2.3 (s, 3H, CH₃), 4.7 (s, 2H, CH₂), 8.2 (s, 1H,CH=N), 7.1-7.8 (m, 9H, Ar-H); ESMS (Methanol) m/z 334.3 (M+); Anal. Calcd. for C₁₈H₁₅N₅S (333.41): C, 64.84; H, 4. 53; N, 21.01; S, 9.62; Found: C, 64.83; H, 4.55; N, 21.02; S, 9.61.

N-(4-(Dimethylamino)benzylidene)-5-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1,3,4-thiadiazol-2-

amine(VIb): Yield 52%, m.p.162-163 0 C, R_f=0.62, λ_{max} 238 nm; IR (KBr, cm⁻¹): 3048.2 (Ar C-H str), 2889.7 (aliphatic C-H str), 2980.7 (aliphatic C-H str), 2798.6 (N-CH₃ str), 1663.7 (C=N), 1502.4 (Ar C-C str), 1352.1 (tertiary C-N str), 742.3 (C-S of thiadiazole nucleus); ¹HNMR: 2.52 (s, 3H, CH₃), 2.88 (s, 6H, CH₃,P-dimethylamino), 4.90(s, 2H, CH₂), 7.0-8.11 (m, 8H, Ar-H), 8.44 (s, 1H,CH=N);ESMS (Methanol) *m*/*z* 375.13 (M+); Anal. Calcd. for C₂₀H₂₀N₆S (376.48): C, 63.81; H, 5.35; N, 22.32; S, 8.52; Found: C, 63.80; H, 5.37; N, 22.32; S, 8.51.

N-(4-Methoxybenzylidene)-5-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1,3,4-thiadiazol-2-

amine (VIc): Yield 69%, m.p.181-183 °C, R_f=0.58, λ_{max} 248 nm; IR (KBr, cm⁻¹): 3036.3 (Ar C-H str), 3019.2 (aliphatic C-H str), 2832.7 (O-C str of O-CH3), 1654.1 (C=N of thiadiazole), 1619.9 (C=N of benzimidazole ring), 1612.7 and 1512.4 (Ar C-C str), 1549.8 (C=N str of Schiff base), 1282.5 (Ar-O str of Schiff base), 749.2 (C-S str of thiadiazole nucleus); ¹H NMR (300 MHz, DMSO-d6, TMS, δ ppm): 2.4 (s, 3H, CH₃), 3.8 (s, 3H, OCH₃), 5.2 (s, 2H, CH₂), 8.3 (s, 1H, CH of benzylidine imine) 6.8-7.5 (m. 8H. benzimidazole and benzylidine); ESMS (Methanol) m/z 363.60 (M+); Anal. Calcd. for C₁₉H₁₇N₅OS (363.44): C, 62.79; H, 4.71; N, 19.27; S, 8.82; Found: C, 62.80; H, 4.70; N, 19.28; S, 8.82.

N-(2-Hydroxybenzylidene)-5-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1,3,4-thiadiazol-2-

amine (VId): Yield 83%, m.p.174-176 0 C, R_f=0.61, λ_{max} 252 nm; IR (KBr, cm⁻¹): 3663.4 (O-H str), 3197.8 (N-H str of Schiff base), 3047.7 (Ar C-H str), 2993.5 (aliphatic C-H str), 2904.4 (aliphatic C-H str), 1664.4 (C=N of thiadiazole), 1617.9 (C=N of benzimidazole ring), 1554.2 (C=N str of Schiff base), 1510.1 and 1052.9 (Ar C-C str), 1427.2 (C-O str of phenol), 744.3 (C-S of thiadiazole nucleus); ¹H NMR: 2.35 (s, 3H, CH₃), 5.11 (s, 2H, CH₂), 5.58 (s,1H,OH), 8.3 (s, 1H, CH=N), 6.8-7.5 (m, 8H, Ar-H); ESMS (Methanol) *m/z* 348.7 (M+); Anal. Calcd. for C₁₈H₁₅N₅OS (349.41): C, 61.87; H, 4.33; N, 20.04; S, 9.18; Found: C, 61.86; H, 4.32; N, 20.02; S, 9.20.

N-(4-Hydroxybenzylidene)-5-((2-methyl-1H-benzo[d]imidazol-1-yl)methyl)-1,3,4-thiadiazol-2-

amine(VIe): Yield 74%, m.p.182-183 ⁰C, R_f=0.64, λ_{max} 238 nm; IR (KBr, cm⁻¹): 3657.3 (O-H str), 3201.3 (N-H str of Schiff base), 3051.3 (Ar C-H str), 3015.2 (aliphatic C-H str), 2999.9 (aliphatic C-H str), 1653.5

(C=N of thiadiazole), 1618.3 (C=N of benzimidazole ring), 1564.7 (C=N str of Schiff base), 1614.7 and 1507.4 (Ar C-C str), 1353.2 (C-O str of phenol), 747.9 (C-S of thiadiazole nucleus); ¹H NMR: 2.30 (s, 3H, CH₃), 5.11 (s, 2H, CH₂), 5.25 (s, 1H, OH), 8.2 (s, 1H, CH=N), 6.8-7.8 (m, 8HAr-H); ESMS (Methanol) m/z 349.4 (M+); Anal. Calcd. for C₁₈H₁₅N₅OS (349.41): C, 61.87; H, 4.33; N, 20.04; S, 9.18; Found: C, 61.85; H, 4.30; N, 20.05; S, 9.19.

General procedure for synthesis of 3-chloro-4-(4substituted phenyl)-1-(5-((2-methyl-1H-benzo [d]imidazol-1-yl)methyl)-1,3,4-thiadiazol-2-

yl)azetidin-2-one (VIIa-e): Required quantity of the compound VIa (0.01 mol) and triethylamine (1.1 g, 0.01mol) was dissolved in absolute alcohol (50 mL).To this mixture, chloroacetylchloride (2.2 mL, 0.02 mol) was added dropwise with constant stirring over period of 1h on mechanical stirrer. Further the reaction mixture was stirred for 3-4 h, followed by cooling and poured onto ice cold water. The separated solid was filtered off, dried and recrystallized from petroleum ether (60-80°). Similarly, all the compounds (VIIa-e) were synthesized by adopting the above said method.

3-Chloro-4-(phenyl)-1-(5-((2-methyl-1Hbenzo[d]imidazol-1-yl)methyl)-1,3,4-thiadiazol-2-

yl)azetidin-2-one (VIIa): Yield 68%, m.p.195-196 $^{\circ}$ C, R_i=0.44, λ_{max} 248 nm; IR (KBr, cm⁻¹); 3048.2 (Ar C-H str), 2909.2 (aliphatic C-H str), 1643.7 (C=N of thiadiazole), 1609.4 (C=N of benzimidazole ring), 1603.6 and 1505.8 (Ar C-C str), 1718.46 (C=O str), 740.4 (C-S of thiadiazole nucleus), 727.7 (C-Cl str); ¹H NMR: 2.4 (s, 3H, CH3), 4.8 (s, 2H, CH₂), 5.4 (s, 2H, CH of propiolactam), 7.1-7.8 (m, 9H, Ar-H); ESMS (Methanol) *m/z* 407.1 (M+); Anal. Calcd. for C₂₀H₁₆ ClN₅OS (409.89): C, 58.60; H, 3.93; Cl, 8.65; N, 17.09; S, 7.82; Found: C, 58.61; H, 3.93; Cl, 8.66; N, 17.08; S, 7.82.

3-Chloro-4-(4-(dimethylamino)phenyl)-1-(5-((2methyl-1H-benzo[d]imidazol-1-yl)methyl)-1,3,4-

thiadiazol-2-yl)azetidin-2-one (VIIb): Yield 64%, m.p.187-188 °C, R_f=0.47, λ_{max} 261 nm; IR (KBr, cm⁻¹): 3042.8 (Ar C-H str), 2979.2 (aliphatic C-H str), 2791.1 (CH₃-N Str), 1693.3 (C=O str), 1647.4 (C=N of thiadiazole), 1616.5 (C=N of benzimidazole ring), 1607.7 and 1508.7 (Ar C-C str), 787.7 (C-Cl str), 738.3 (C-S of thiadiazole nucleus) ; ¹H NMR: 2.3 (s, 3H, CH3), 2.9 (s, 6H, N-(CH₃)₂), 4.8 (s, 2H, CH₂), 5.2-5.6 (s, 2H, CH of propiolactam), 6.6-7.8 (m, 8H, Ar-H and benzimidazole); ESMS (Methanol) *m/z* 455.4 (M+); Anal. Calcd. for C₂₂H₂₁ClN₆OS (452.96): C, 58.34; H, 4.67; Cl, 7.83; N, 18.55; S, 7.08; Found: C, 58.35; H, 4.66; Cl, 7.82; N, 18.58; S, 7.07.

3-Chloro-4-(4-methoxyphenyl)-1-(5-((2-methyl-1Hbenzo[d]imidazol-1-yl)methyl)-1,3,4-thiadiazol-2-

yl)azetidin-2-one (VIIc): Yield 71%, m.p. 202-204 $^{\circ}$ C, R_f=0.48, λ_{max} 238 nm; IR (KBr, cm⁻¹): 3019.2 (aliphatic C-H str),3040.7 (Ar C-H str), 1718.46 (C=O str), 1654.3 (C=N of thiadiazole), 1627.9 (C=N of benzimidazole ring), 1603.6 and 1505.8 (Ar C-C str), 1035.7 (C-O str of OCH₃), 823.9 (C-H def disubstituted benzene ring), 781.6 (C-Cl str), 750.5 (C-S of thiadiazole nucleus); ¹H NMR: 2.4 (s, 3H, CH3), 3.8 (s, 3H, O-CH₃), 4.9 (s, 2H, CH₂), 5.1-5.4 (s, 2H, CH of propiolactam), 6.6-7.8 (m, 8H, Ar-H and benzimidazole); ESMS (Methanol) *m/z* 4 41.9(M+); Anal. Calcd. for C₂₁H₁₈ClN₅O₂S (439.92): C, 57.33; H, 4.12; Cl, 8.06; N, 15.92; S, 7.29; Found: C, 57.32; H, 4.12; Cl, 8.08; N, 15.91; S, 7.29.

3-Chloro-4-(2-hydroxyphenyl)-1-(5-((2-methyl-1Hbenzo[d]imidazol-1-yl)methyl)-1,3,4-thiadiazol-2-

yl)azetidin-2-one (VIId): Yield 79%, m.p.213-214 6 C, R_f=0.58, λ_{max} 242 nm; IR: 3388.2 (O-H str), 3035.8 (Ar C-H str), 2980.7 (aliphatic C-H str), 1718.46 (C=O str), 1642.7 (C=N of thiadiazole),1618.3 (C=N of benzimidazole ring), 1613.6 and 1501.7 (Ar C-C str), 1369.8 (C-O str), 783.9 (C-Cl str), 762.5 (C-S of thiadiazole nucleus); ¹H NMR : 2.4 (s, 3H, CH3), 5.0 (s, 1H, O-H), 4.8 (s, 2H, CH₂), 5.1-5.4 (s, 2H, CH of propiolactam), 6.6-7.7 (m, 8H, Ar-H and

References

- 1. Neu H. C., Science, 1992, 257, 1064.
- Mullican M. D., Wilson M. W., Connor D. T., Kostlan C. R., Schrier D. J. and Dyer R. D., J Med Chem, 1993, 36,1090.
- Dutta M. M., Goswami B. N. and Kotaky J. C. S., *Chem Abstr*, 1988, 108,75309q.
- 4. Rollas S., Oruc E. E., Kandemirli F., Shvets N. and Dimoglo S., *J Med Chem*, 2004, 47, 6770.
- Hanna M. A., Girges M. M., Rasala D. and Gawinecki R., Arzeneim-Forsch/ Drug Res, 1995, 45 1074.
- 6. Cross P. E. and Dickinson P. R., *Chem Abstr*, 1978, 88,190839t.
- Zuhair M. E., Fuad A. J., Shamis E., Sabah A. K., Hanan G. and Murfied G., *Chem Abstr*, 1983, 98, 72006c.
- Karegoudar P., Prasad D. J., Ashok M., Mahalinga M., Poojary B. and Holl B. S., *Eur J Med Chem*, 2008, 43,808.

benzimidazole); ESMS (Methanol) m/z 425.10; Anal. Calcd. for C₂₀H₁₆ClN₅O₂S (425.89): C, 56.40; H, 3.79; Cl, 8.32; N, 16.44; S, 7.53; Found: C, 56.41; H, 3.79; Cl, 8.33; N, 16.45; S, 7.53.

3-Chloro-4-(4-hydroxyphenyl)-1-(5-((2-methyl-1Hbenzo[d]imidazol-1-yl)methyl)-1,3,4-thiadiazol-2-

yl)azetidin-2-one (VIIe): Yield 76%, m.p.221-223 °C, $R_f=0.47$, λ_{max} 273 nm; IR (KBr, cm⁻¹): 3600.2 (O-H str), 3036.3 (Ar C-H str), 2980.7 (aliphatic C-H str), 1722.46 (C=O str), 1641.4 (C=N of thiadiazole), 1619.7 (C=N of benzimidazole ring), 1613.6 and 1501.7 (Ar C-C str), 1353.7 (C-O str), 813.5 (C-Cl str), 760.1 (C-S of thiadiazole nucleus); ESMS Calcd. 425.98; (Methanol) m/zAnal. for C₂₀H₁₆ClN₅O₂S (425.89): C, 56.40; H, 3.79; Cl, 8.32; N, 16.44; S, 7.53; Found: C, 56.42; H, 3.80; Cl, 8.31; N, 16.42; S, 7.52.

Acknowledgement

The authors are thankful to the Director, Institute of Microbial Technology (IMTECH) Chandigarh, INDIA for providing microorganism strains; and Principal, Modern Institute of Pharmaceutical Sciences, Indore for providing necessary facilities to carry out this research work.

- 9. Padmavathi V., Sudhakar R. G., Padmaja A., Kondaiah P. and Ali S., *Eur J Med Chem*, 2009, 44, 2106.
- 10. Lamani R. S., Shetty N. S., Kamble R. R. and Khazi I. A, *Eur J Med Chem*, 2009, 44, 2828.
- 11. Khairnar V.L., Lockhande S.R., Patel M.R. and Khadse B.G., *Chem Abstr.* 1981, 95, 203833h.
- 12. Kruse L.L., Ladd D.L., Harrsch P.B., McCabeF.L., Mong, S.M., Faucett, L. and Johnson R., J. *Med. Chem.* 1989, 32, 409-417.
- Islam I., Skibo E.B., Dorr R.T. and Alberts D.S., J. Med. Chem. 1991, 34, 2954-2961.
- 14. Habernickel V.J., Drugs made in Germany, 1992, 35, 97.
- 15. Fukuda T., Saito T., Tajima S., Shimohara K. and Ito K., *Arzneim.-Forsch./Drug Res.* 1984, 34, 805-810.
- Nakan H., Inoue T., Kawasaki N., Miyataka H., Matsumoto H., Taguchi T., Inagaki N., Nagai H. and Satoh T., Chem. *Pharm. Bull*, 1999, 47, 1573-1578.
- 17. Can-Eke B., Puskullu M.O., Buyukbingol E.and Iscan M., *Chemico-Biological Interactions*, 1998, 113, 65-77.

- Kus C., Ayhan-Klcgil G., Can-Eke B.and Iscan M. Arch. Pharm. Res, 2004, 27, 156-163.
- 19. Ayhan-Klcgil G., Kus C., Coban T., Can-Eke B. and Iscan M., *Journal of Enzyme Inhibition and Medicinal Chemistry*, 2004, 19, 129-135.
- Goker H., Ayhan-Klcgil G., Tuncbilek M., Kus C., Ertan R., Kendi E., Ozbey S., Fort M., Garcia C. and Farre A.J., *Heterocycles*, 1999, 51, 2561-2573.
- Abdel-Rahman A.E., Mahmoud A.M., El-Naggar G.M. and El-Sherief, H.A., *Pharmazie* 1983, 38, 589-590.
- 22. Soliman F.S.G., Rida S.M., Badawey E.A.M. and Kappe, T. *Arch. Pharm.* 1984,317, 951-958.
- 23. Coburn R.A., Clark M.T., Evans R.T. and Genco, R.J., J. *Med. Chem.* 1987, 30, 205-208.
- 24. Habib N.S., Abdel-Hamid S. and M. El-Hawash, *Farmaco*, 1989, 44, 1225-1232.
- 25. Goker H., Kus C., Boykin D.W., Yldz S. and Altanlar, N., *Bioorg. Med. Chem.* 2002, 10, 589-2596.

- 26. Ozden S., Karatas H., Yldz S. and Goker H., Arch. Pharm. Pharm. Med. Chem. 2004,337, 556-562.
- 27. Ozden S., Atabey D., Yldz S.and Goker H., *Bioorg. Med. Chem.* 2005, 13, 1587-1597.
- 28. Furniss B S, Hannaford A J, Smith P W G and Tatchell A R, *Vogel's Text book of Practical Organic Chemistry*, 5th edition, (Pearson Education, Singapore) 2005, 1077.
- 29. Ansari K. F., and Lal, C., *Eur J Med Chem*, 2009, 44, 2294.
- Atlas R. M., Parks L. C. and Brown A. E., Laboratory Manual of Experimental Microbiology, (Mosby Year Book Inc, USA) 1995, 335.
- 31. Daniel L., *Microbiology*, (WCB Mc-Graw Hill, Boston), 1998, 133.
- 32. Microbial Type Culture Collection and Gene Bank (MTCC) Catalogue, Institute of Microbial Technology: Chandigarh, 1998, pp. 130.
- 33. Talesara GL, Sharma R and Nagda D P, *ARKIVOC*, 2006, I, 1-12.
