Kinetic Study of Hydrolysis of Mono-2-methyl- 5-Nitroaniline phosphate

Pragya Awadhiya¹* and S.A. Bhoite²

¹ RSR Rungta College of Engineering and Technology, Raipur (C.G.), India.
² Pt. Ravishankar Shukla University, Raipur (C.G.), India.

*Corres. author: p_awadhiya@rediffmail.com
Ph: +91-98261-33301

Abstract: Kinetic study of the acid-catalyzed hydrolysis of mono-2-methyl-5-nitroaniline phosphate has been studied in 0.1-7.0 mol dm⁻³ hydrochloric acid at 50°C in aqueous medium. In the presence of acid, the rate constant increased with increasing acidity up to 4 mol dm⁻³. Neutral and conjugate acid species have been found to be reactive and contribute to the overall hydrolysis in the acid region. Ionic strength data show the positive salt effect. The effects of temperature, solvent and substrate concentration on the rate of hydrolysis have been studied. The results suggest that the hydrolysis of monoester occurs by the cleavage of P-N bond.

Keywords: kinetics; ionic strength; solvent; bond fission.

INTRODUCTION

Organic phosphates are very important, due to their wide range of applications in various branches of chemistry. Organophosphorous compounds play a key role in life processes¹, in living organism for growth, development and maintenance of all plants² and animals³. Phosphate monoesters are intermediates in a variety of metabolic pathways⁴. Phosphate tri-esters are more reactive than the corresponding mono- and di-esters and do not participate in living organism as metabolites⁵. Organophosphorous compounds are widely used as pesticides⁶, insecticides⁷, chemical warfare agents⁸, fire retardants⁹, smoke generation¹⁰, additives for petroleum and corrosion inhibitors¹¹, selective extractants for metal salts from ores¹². Cyclic amine phosphate in combination with phosphoramidic acid and sulfa drugs are very important for their pharmaceutical and medicinal value¹² and as cancer chemotherapeutic agents¹³.

EXPERIMENTAL

Mono-2-methyl-5-nitroaniline phosphate has been synthesized by the literature method in our laboratory¹⁴. The method involves the reaction of 2-methyl-5-nitroaniline and phosphorous pentaoxide in 1:1 mol ratio. The solid mass obtained was separated and water soluble part was precipitate out using Ba(OH)₂ solution. Thus the Barium salt of monoester obtained as white solid was washed several times with distilled water with few drops of acetic acid to remove inorganic phosphate. All the chemicals used were of A.R. grade and all solutions have been prepared in triply distilled water. The confirmation of compound was done by comparing theoretical and observed percentage of elements and by recording IR spectrum as shown below:

a) Elemental analysis
C, Theoretical = 22.86 %
Observed = 21.72 %

H, Theoretical = 1.91 %
Observed = 2.21 %

N, Theoretical = 7.62 %
Observed = 7.12 %
b) IR absorption spectra
The spectrum of mono-2-methyl-5-nitroaniline phosphate was recorded by FTIR Model 136 Shimadzu.
ν (KBr) cm$^{-1}$: 3325(O-H); 3195(N-H); 2875(C=C); 1131(P=O); 724(P-N)
Hydrolysis of mono-2-methyl-5-nitroaniline phosphate has been carried out at 50°C employing 5.0x10$^{-4}$ mol dm$^{-3}$ solution in aqueous medium. The progress of the kinetic study has been carried out by Allen’s modified method15, using spectrophotometer at 735 nm. The constant ionic strength has been maintained by using mixtures of HCl and NaCl. Pseudo-first-order rate constants have been derived from the first-order rate equation.

Table – 1: Estimated & experimental rates of hydrolysis of Mono-2-methyl-5-nitroaniline phosphate at 50°C

<table>
<thead>
<tr>
<th>HCl (mol dm$^{-3}$)</th>
<th>$k_{H^+}.C_{H^+}$ 10$^{-1}$ (min$^{-1}$)</th>
<th>k_N 103 (min$^{-1}$)</th>
<th>$-\log (a_{H_2O})^a$</th>
<th>k 103 (min$^{-1}$)</th>
<th>k 103 (min$^{-1}$)</th>
<th>4+log k</th>
<th>4+log k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>1.09</td>
<td>1.30</td>
<td>2.39</td>
<td>2.39</td>
<td>5.12</td>
<td>1.38</td>
<td>1.71</td>
</tr>
<tr>
<td>0.2</td>
<td>2.24</td>
<td>1.37</td>
<td>3.61</td>
<td>3.61</td>
<td>5.87</td>
<td>1.56</td>
<td>1.77</td>
</tr>
<tr>
<td>0.5</td>
<td>6.59</td>
<td>1.62</td>
<td>8.21</td>
<td>8.21</td>
<td>9.33</td>
<td>1.91</td>
<td>1.97</td>
</tr>
<tr>
<td>1.0</td>
<td>13.2</td>
<td>2.14</td>
<td>15.3</td>
<td>15.3</td>
<td>16.6</td>
<td>2.19</td>
<td>2.22</td>
</tr>
<tr>
<td>2.0</td>
<td>33.1</td>
<td>3.72</td>
<td>36.8</td>
<td>36.8</td>
<td>36.2</td>
<td>2.57</td>
<td>2.56</td>
</tr>
<tr>
<td>3.0</td>
<td>60.3</td>
<td>6.76</td>
<td>66.7</td>
<td>66.7</td>
<td>66.3</td>
<td>2.82</td>
<td>2.82</td>
</tr>
<tr>
<td>4.0</td>
<td>98.2</td>
<td>11.2</td>
<td>109.4</td>
<td>109.4</td>
<td>109.7</td>
<td>3.04</td>
<td>3.04</td>
</tr>
<tr>
<td>5.0</td>
<td>151.0</td>
<td>19.5</td>
<td>170.5</td>
<td>(0.155)2</td>
<td>83.5</td>
<td>94.7</td>
<td>2.92</td>
</tr>
<tr>
<td>6.0</td>
<td>222.9</td>
<td>33.9</td>
<td>256.8</td>
<td>(0.211)3</td>
<td>59.8</td>
<td>62.5</td>
<td>2.78</td>
</tr>
<tr>
<td>7.0</td>
<td>319.9</td>
<td>58.9</td>
<td>378.8</td>
<td>(0.279)4</td>
<td>29.0</td>
<td>32.9</td>
<td>2.46</td>
</tr>
</tbody>
</table>

Note -: a = 10 % dioxane, b = 20 % dioxane, c = 30% dioxane

Fig 1: Acid log rate profile for the hydrolysis of Mono-2-methyl-5-nitroaniline phosphate at 50°C
Chart – 1- Mechanism of hydrolysis-

(a) Formation of conjugate acid species by fast pre-equilibrium proton transfer

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{P} \quad \text{HOH} + \text{H}^+ & \rightarrow & \text{O}_2\text{N} & \quad \text{P} \quad \text{OH} \\
\text{Neutral Species} & & \text{Conjugate acid species}
\end{align*}
\]

Scheme I

(b) Bimolecular nucleophilic attack of water on phosphorous via conjugate acid species \(S_N^2\)

Scheme II
RESULTS AND DISCUSSION

The kinetics of the hydrolysis of mono-2-methyl-5-nitroaniline phosphate has been studied in 0.1-7.0 mol dm⁻³ hydrochloric acid at 50°C. Pseudo-first-order rate constant have been obtained at several hydrochloric acid concentrations which are summarized in Table-1.

From the results, it may be seen that the rate of hydrolysis increases with the increase in acid molarity up to 4.0 mol dm⁻³ hydrochloric acid. The maximum rate at 4.0 mol dm⁻³ hydrochloric acid has been attributed to complete conversion of the substrate into its conjugate acid species. Neutral and conjugate acid-catalyzed rates of mono-2-methyl-5-nitroaniline phosphate is as:

\[\text{log } k_n = \text{log } k_{no} + b'_n \mu \]

Where, \(b'_n \) is equal to \(b'_{n/2.303} \) and the intercept on log neutral rate axis is equal to \(3 + \log k_{no} \). Its value in mono-2-methyl-5-nitroaniline phosphate is as:

\[3 + \log k_{no} = 0.09 \]

The overall hydrolysis has been represented by the equation:

\[k = k_{Hi} \cdot C_{Hi} + k_{no} \]

Figure-3 shows the specific acid catalysed rates with their logarithmic values at that ionic strength. The slope value of linear curve is \(b'_{Hi} \) which is equal to \(b'_{Hi}/2.303 \) and intercepts on the log rate axis represents \(3 + \log k_{no} \). Its value in mono-2-methyl-5-nitroaniline phosphate is as:

\[3 + \log k_{no} = 1.03 \]

The overall hydrolysis has been represented by the equation:

\[k = k_{Hi} \cdot C_{Hi} + k_{no} \]

The equation (6) can be used to estimate theoretical rates which are then compared with the experimental rates.

It is seen that there is good agreement between the estimated and experimental rates up to 4.0 mol HCl. However, there is disagreement in rates of 5.0, 6.0 and 7.0 mol HCl, which has been found to be owing to the incursion of water activities and can be represented by following equation:

\[k_{Hi} \cdot C_{Hi} = k_{no} \cdot \exp \left(b'_{Hi} \mu \right) \left(a_{H2O}\right)^n \]

And neutral rate at higher concentration is as follows:

\[k_n = k_{no} \cdot \exp \left(b'_{n/2.303} \mu \right) \left(a_{H2O}\right)^n \]

Where water activity and \(n \) is an integer which increases with increase in acidity. Hence, complete rate of hydrolysis can be represented at higher acidity by following equation:

\[k = k_{no} \cdot \exp \left(b'_{Hi} \mu \right) \left(a_{H2O}\right)^n + k_{no} \cdot \exp \left(b'_{n/2.303} \mu \right) \left(a_{H2O}\right)^n \]
Where \(n \) is an integer and \(a_{\text{H}_2\text{O}} \) is water activity. The revised estimated rates agree well with the experimentally observed rates (Table-1). It has been clear from the above results that hydrolysis of mono-2-methyl-5-nitroaniline phosphate ester in acid solution occurs via both conjugate acid and neutral species and their rates are subjected to ionic strength or water activity. Solvent effect (Table-1) shows a significant rise in rates, dioxane being a better proton donor than water, increases the concentration of conjugate acid species resulting in the increase rates. Effect on the rate of hydrolysis may, therefore, be taken to indicate the formation of transition state in which charge is dispersed; this is accordance with Chanley’s observation.

Table-2: Arrhenius parameters for hydrolysis of Mono-2-methyl-5-nitroaniline phosphate

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Phosphate Monoester</th>
<th>HCl (mol dm(^{-3}))</th>
<th>E (Kcal/mole)</th>
<th>A (sec(^{-1}))</th>
<th>-(\Delta S^\theta) (e.u.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-chloro-5-nitroaniline</td>
<td>4.0</td>
<td>13.54</td>
<td>8.95 \times 10^6</td>
<td>20.76</td>
</tr>
<tr>
<td>2</td>
<td>1-nitroso-2-napthyl</td>
<td>3.0</td>
<td>11.39</td>
<td>3.10 \times 10^6</td>
<td>22.87</td>
</tr>
</tbody>
</table>

Table-3: Comparative kinetic rate data for the hydrolysis of some phosphate monoester via their conjugate acid species

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Phosphate Monoester</th>
<th>HCl (mol dm(^{-3}))</th>
<th>E (Kcal/mol)</th>
<th>-(\Delta S^\theta) (e.u.)</th>
<th>Bond fission</th>
<th>Molecularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-chloro-5-nitroaniline</td>
<td>4.0</td>
<td>13.54</td>
<td>32.65</td>
<td>P-N</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1-nitroso-2-napthyl</td>
<td>3.0</td>
<td>11.39</td>
<td>40.25</td>
<td>P-N</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2-methyl-5-nitroaniline</td>
<td>3.0</td>
<td>14.64</td>
<td>20.76</td>
<td>P-N</td>
<td>Present work</td>
</tr>
<tr>
<td>4</td>
<td>2-methyl-5-nitroaniline</td>
<td>4.0</td>
<td>13.73</td>
<td>22.87</td>
<td>P-N</td>
<td>Present work</td>
</tr>
<tr>
<td>5</td>
<td>Diethyl amine</td>
<td>4.0</td>
<td>6.61</td>
<td>60.65</td>
<td>P-N</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>p-nitro aniline</td>
<td>3.0</td>
<td>15.25</td>
<td>9.5</td>
<td>P-N</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig 2: Acid catalyzed hydrolysis of Mono-2-methyl-5-nitroaniline phosphate at constant ionic strength at 50\(^{\circ}\)C
Arrhenius parameters are determined for the hydrolysis at 3.0 and 5.0 mol dm$^{-3}$ HCl (Table-2). The magnitude of the Arrhenius parameters falls in the range of bimolecular reaction19. Bimolecular nature of reaction is further supported by plots of Hammett20 (0.69), Zucker-Hammett21 (1.35) & Bunnett22 ($w = 7.68, w^* = 2.09$). Bunnett-olsen23 parameter ($\phi = 1.27$ which is greater than 0.58) (plots not shown) suggested that water involved as a proton transfer agent in the rate determining step.

The effect of concentration of monoester on the rate of hydrolysis also confirms the order of reaction to be one with respect to the monoester by reducing half ($k = 109.12 \times 10^{-3}$ min$^{-1}$) or double ($k = 110.28 \times 10^{-3}$ min$^{-1}$) the normal concentration ($k = 109.74 \times 10^{-3}$ min$^{-1}$) at 4.0 mol dm$^{-3}$ HCl.

Mono-2-methyl-5-nitroaniline phosphate may undergo hydrolysis either by P-N or C-N bond fission. Table-3 summarizes comparative rate data for the hydrolysis of other monoesters studied kinetically shows isokinetic relationship25. The point of mono-2-methyl-5-nitroaniline phosphate lies on the linear curve of those monoesters which are known to undergo hydrolysis via P-N bond fission (Fig. not shown). Thus P-N rather than C-N bond fission appears to be more probable. The bimolecular hydrolysis with P-N bond fission of the conjugate acid species has been proposed as shown in chart -1.

REFERENCES
