Hepatoprotective Effect of the Ethanolic Extract of *Calocybe indica* on Mice with CCl$_4$ Hepatic Intoxication

Soumya Chatterjee, Anwesha Dey, Riddhi Dutta, Sandip Dey, Krishnendu Acharya*

Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata-700 019, West Bengal, India.

*Corres. Author: krish_paper@yahoo.com
Telephone: 08013167310

Abstract: This study was undertaken to investigate the hepatoprotective activity of ethanolic extract of a wild edible mushroom (*Calocybe indica*) against carbon tetrachloride (CCl$_4$) induced hepatic damage in mice. Oral administration of CCl$_4$ (2.5 ml/kg body weight/day) induced chronic hepatotoxicity resulting elevated serum levels of glutamate pyruvate transaminase (SGPT), glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP) and bilirubin content. The substantially elevated serum marker enzyme levels were restored towards normalization by the extract treatment when administered at a dose of 150 mg/kg body wt once daily. Silymarin was used as standard reference drug. The hepatic antioxidant status such as superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) levels were reduced in the CCl$_4$ alone treated animals with subsequent increase in lipid peroxidation. Administration of the extract challenge restored the hepatic antioxidant status. Furthermore, histopathogical studies confirmed the hepatoprotective effect conferred by the ethanolic extract of *C. indica*. The findings thus suggested ethanolic extract of *C. indica* protects CCl$_4$ induced chronic hepatotoxicity in mice by restoring the liver antioxidant status.

Keywords: *Calocybe indica*, Carbon tetrachloride, Hepatoprotective effect, Lipid peroxidation, Mushroom.

1. INTRODUCTION

The liver is the main organ responsible for multitude of essential functions and plays an essential role in the metabolism of foreign compounds entering the body. Human beings are exposed to these compounds through environmental exposure, consumption of contaminated food or during exposure to chemical substances in the occupational environment. All these compounds produce a variety of toxic manifestation (1). Liver injuries induced by various hepatotoxins have been recognized as a major toxicological problem for years (2). Carbon tetrachloride (CCl$_4$) is a xenobiotic producing hepatotoxicity in human beings and animals (3, 4). CCl$_4$ mediated hepatocyte injury is characterized by centrilobular necrosis followed by hepatic fibrosis (5). CCl$_4$ is biotransformed to a trichloromethyl radical by cytochrome P450 system in liver microsomes, and consequently causes lipid peroxidation of membranes that leads to liver injury (6-8). Trichloromethyl (CCl$_3$.) radical even reacts with reduced glutathione (GSH) and causes various pathological and toxicological manifestations (9). CCl$_4$...
has been shown to activate Kupffer cells by increasing intercellular Ca$^{2+}$ concentration, causing release of harmful cytokines that contribute to the death of hepatocytes and oxidative stress (10, 11). Antioxidants play a crucial role in hepatoprotective ability and hence the search for crude drugs of natural origin with this property has become a central focus of study of hepatoprotection today (12). In spite of tremendous advances in modern medicine no effective drugs are available, which stimulate liver functions and offer protection to the liver from the damage or help to regenerate hepatic cells (13). In absence of reliable liver-protective drugs in modern medicine, a large number of medicinal preparations are recommended for the treatment of liver disorders and quite often claimed to offer significant relief (14). Mushrooms are macrofungi, and they have had a notable place in folk medicine throughout the world since ancient times. Attempts have been made in many parts of the world to explore the use of mushrooms and their metabolites for the treatment of a variety of human sufferings (15). Besides being a healthy food, mushrooms are used as a Troms for the persons suffering from cancer, coronary heart disease, diabetes, high blood pressure, constipation, renal failure etc (16). Mushrooms have been known to be potential source of antioxidants and also capable of strong inhibition of lipid peroxidation (17-19). Calocybe indica of the Family Lyophyllaceae, a wild edible mushroom generally grows solitary or sometimes in groups in moist soil or at shade of trees. Here, an attempt has been made to evaluate the hepatoprotective potency against CCl$_4$ induced hepatic damage in mice of ethanolic extract of C. indica.

2. EXPERIMENTAL

Sample collection and preparation
Basidiocarps of Calocybe indica were collected from the forest and local market of South 24 Parganas, West Bengal, India.

Fresh mushrooms were randomly selected into three samples of 150 g each and air-dried in an oven at 40 $^\circ$C for 48 h. Dried powdered mushroom sample was extracted by stirring with 200 ml of ethanol at 30 $^\circ$C for 24 h at 150 rpm and filtering through Whatman No. 4 filter paper. The residue was then extracted twice with another 200 ml of ethanol as described above. The total extract was then rotary evaporated to dryness at 40 $^\circ$C and redissolved in ethanol to a concentration of 10 mg/ml and stored at -20 $^\circ$C for further use (20).

Animals
Healthy male Swiss albino mice of approximately same age weighing about 20 g were used for the study. They were fed with standard diet and water ad libitum and housed in polypyrrole cages maintained under standard condition (12 h light/dark cycle; 25 ± 3 $^\circ$C, RH 35-60%). The animals were maintained according to the guidelines recommended by Animal Welfare Board and approved by our institutional ethics committee. All procedures complied with the Declaration of Helsinki, as revised in 1996.

Acute toxicity studies
The acute toxicity study for C. indica ethanolic extract was performed using Swiss albino mice. The animals were fasted overnight prior to the experiment and maintained under standard conditions. The extract were administered orally in increasing dose and found safe up to dose of 3000 mg/kg body wt.

CCl$_4$ induced hepatotoxicity and assessment of liver damage
The animals were divided into 4 groups of 6 animals each. Group I, which served as normal control received saline (5 ml/kg body wt/day, p.o.). Group II, the positive control was given CCl$_4$ in paraffin oil (1:1, 2.5 ml/kg body wt/day, p.o.) once daily for 7 consecutive days. Group III received standard drug Silymarin (100 mg/kg body wt, p.o.) once daily for 7 days and simultaneously administered with CCl$_4$ with equal volume of paraffin oil. Group IV received ethanolic extract of C. indica (150 mg/kg body wt, p.o) once daily for 7 consecutive days, simultaneously with equal mixture of CCl$_4$ and paraffin oil. The animals were sacrificed 24 h after the last treatment of CCl$_4$. Blood was collected, allowed to clot and serum was separated by centrifugation at 2500 rpm for 15 min and biochemical investigations were carried out. The liver was excised for the determination of antioxidants and fixed in 10% buffered formalin for histopathological assessment of liver damage.

Determination of hepatoprotective effect
As a marker of hepatocyte necrosis, the activities of serum hepatic marker enzymes namely, serum glutamate pyruvate transaminase (SGPT) (21), serum glutamate oxaloacetate transaminase (SGOT) (21), total and direct bilirubin (22) and alkaline phosphatase (ALP) (23) were assayed using assay kits (Span Diagnostic, Surat).

Evaluation of antioxidant status
Liver samples were dissected out and washed immediately with ice-cold saline to remove as much blood as possible. Liver homogenates (10% w/v) were prepared in cold PBS (50 mM, pH 7). The homogenate was centrifuged at 5000 \times g for 10 min in a centrifuge at 4 $^\circ$C, and after removal of the cell debris, the supernatant was used for the assay of superoxide...
dismutase (SOD) (24), catalase (CAT) (25),
malondialdehyde (MDA) (26) and estimation of GSH
(27). Protein was determined by the method of Lowry
et al (28).

Histopathological examination
Liver tissue was dissected out and fixed in 10%
formalin, dehydrated in ethanol gradient (30-100%),
cleared in xylene and then embedded in paraffin.
Microtome sections of 4 µm thickness were prepared
from each liver and stained with hematoxylin-eosin
(H&E). The sections were observed microscopically
for assessment of necrosis, fatty infiltration, fibrosis,
lymphocyte infiltration, and so forth.

Table 1: Effect of C. indica ethanolic extract on biochemical parameters of serum in mice. Values
represented as means ± SD from three independent observations.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>SGPT (IU/ l)</th>
<th>SGOT (IU/ l)</th>
<th>ALP (KA)</th>
<th>TB (mg/dl)</th>
<th>DB (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>Normal</td>
<td>42.0 ± 11.7</td>
<td>52 ± 12</td>
<td>7.53 ± 0.33</td>
<td>0.708 ± 0.006</td>
<td>0.092 ± 0.006</td>
</tr>
<tr>
<td>Group II</td>
<td>CCl₄</td>
<td>128.0 ± 29.4</td>
<td>112 ± 21</td>
<td>14.47 ± 0.34</td>
<td>1.518 ± 0.008</td>
<td>0.429 ± 0.005</td>
</tr>
<tr>
<td>Group III</td>
<td>Silymarin + CCl₄</td>
<td>83.67 ± 12</td>
<td>72.67 ± 9.3</td>
<td>8.17 ± 0.49</td>
<td>0.735 ± 0.007</td>
<td>0.126 ± 0.005</td>
</tr>
<tr>
<td>Group IV</td>
<td>Ethanolic extract + CCl₄</td>
<td>94.67 ± 14.2</td>
<td>80.6 ± 15</td>
<td>9.5 ± 0.22</td>
<td>0.835 ± 0.01</td>
<td>0.142 ± 0.004</td>
</tr>
</tbody>
</table>

Figure 1: Hepatoprotective effect of ethanolic extract of C. indica on CCl₄ induced pathological changes in
mice liver. Liver sections stained with H & E. (A) Liver section of normal mice. (B) Liver section of CCl₄
treated mice. (C) Liver section of mice treated with CCl₄ + Ethanolic extract (150 mg/ kg body wt).
Table 2: Effect of *C. indica* ethanolic extract on liver MDA, SOD, CAT and GSH. Values represented as means ± SD from three independent observations.

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
<th>MDA (nmol/mg)</th>
<th>GSH (μg/mg)</th>
<th>SOD (U/mg)</th>
<th>CAT (μ mole/ min/ mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td>Normal</td>
<td>150.3 ± 3.12</td>
<td>0.820 ± 0.044</td>
<td>7.54 ± 0.79</td>
<td>219.43 ± 6.13</td>
</tr>
<tr>
<td>Group II</td>
<td>CCl₄</td>
<td>239 ± 5.23</td>
<td>0.307 ± 0.051</td>
<td>4.39 ± 0.50</td>
<td>79.53 ± 4.24</td>
</tr>
<tr>
<td>Group III</td>
<td>Silymarin + CCl₄</td>
<td>154.42 ± 3.73</td>
<td>0.681 ± 0.039</td>
<td>6.18 ± 0.42</td>
<td>197.69 ± 3.72</td>
</tr>
<tr>
<td>Group IV</td>
<td>Ethanolic extract + CCl₄</td>
<td>160.5 ± 2.96</td>
<td>0.450 ± 0.047</td>
<td>5.83 ± 0.56</td>
<td>185.64 ± 2.65</td>
</tr>
</tbody>
</table>

3. RESULTS

Acute toxicity studies
The ethanolic extract of *C. indica* did not show any sign and symptoms of toxicity and mortality up to 3000 mg/ kg body wt dose.

Hepatoprotection
The hepatoprotective effects of ethanolic extract of *C. indica* on CCl₄ induced hepatic injury in mice are shown on Table 1. Chronic exposure to CCl₄ revealed elevated liver function indices such as SGPT, SGOT and ALP compared to the normal set. The increased activity of the serum marker enzymes may explain cell membrane breakdown and death (29). The SGPT and SGOT activities in CCl₄ alone treated mice were 128.0 ± 29.4 and 112.0 ± 21 IU/L respectively. The activity was moderately lowered by ethanolic extract treatment. Serum transaminases (SGPT and SGOT) was inhibited by 26.04% and 28.04% respectively compared with control group animals whereas the extract showed inhibition of 34.35% in ALP level with respect to the control set. The serum total and direct bilirubin levels were also elevated in the CCl₄ alone treated groups thereby indicating hepatic damage (30). Treatment with ethanolic extract in group IV lowered the levels, comparable to standard drug Silymarin and towards normalization.

Antioxidant status in liver
A marked increase in the levels of MDA was found in the livers of animals in CCl₄ intoxicated group II when compared to the normal set (Table 2). Treatment with the extract in group IV resulted in lowering of MDA comparable with positive control set. The activities of SOD and CAT was observed to be decreased on CCl₄ intoxication, whereas treatment with extract appeared to exert a beneficial effect since the hepatic antioxidant level is restored to a extent compared to normal and drug control groups. In the CCl₄ intoxicated group II, SOD and CAT were depleted to 4.39 ± 0.50 U/mg and 79.53 ± 4.24 μmole/ min/ mg protein respectively. The reduced levels were ameliorated to values as 5.83 ± 0.56 U/mg and 185.64 ± 2.65 μmole/ min/ mg protein in the extract treated groups. GSH was also found to be augmented by our extract (Table 2), which is a sign of improved hepatic function.

Histopathological observations
Histopathological observations showed severe necrosis, fatty changes, fibrosis, broad infiltration of lymphocytes and loss of cellular boundaries in the hepatocyte of CCl₄ alone treated animals (Figure 1). The histological architecture of liver sections of mice treated with the ethanolic extract showed more or less normalized lobular pattern almost comparable to normal and silymarin treated set with well preserved cytoplasm, prominent nucleus and visible central veins.

4. DISCUSSION

CCl₄ induced hepatic injuries are commonly used models for hepatoprotective drug screening (31). Results of the current study reveal the hepatoprotective activity of the ethanolic extract of *C. indica* against chronic hepatotoxicity induced by CCl₄. The extent of hepatic damage is assessed by the level of increased cytoplasmic enzymes (SGPT, SGOT and ALP), serum bilirubin content in circulation (32) and by histopathological examinations. The experimental damage produced by CCl₄ intoxication resembles viral hepatitis histologically (33). Treatment with the extract lowers serum transaminases indicating stabilization of plasma membrane as well as repair of hepatic injury. The elevated serum ALP activity was due to the intrahepatic cholestasis (34), which was reduced in the extract-treated animals. These effects are in agreement with the commonly accepted view that serum levels of transaminases return to normal with the healing of hepatic parenchyma and regeneration of hepatocytes (35). Even pathological alteration in biliary flow is reflected by the enzyme ALP (36). Marked increase in serum bilirubin content is also in relation with CCl₄...
induced elevation of serum enzymatic activity. The bilirubin content consequent to CCl₄ treatment, indicating the ability of the extract to stabilize biliary dysfunction in mice liver during hepatic injury with CCl₄. The antioxidant status of the hepatocytes was altered in the CCl₄ alone treated animals. The treatment of ethanolic extract of C. indica with CCl₄ effectively protected the decline of antioxidant activity. The basis of hepatotoxicity of CCl₄ lies in its metabolism in cytochrome P450 system forming two free radicals. The first metabolite, a trichloromethyl radical, forms covalent adducts with lipids and proteins; it can interact with O₂ to form a second metabolite, a trichloromethylperoxy free radical, or can remove hydrogen atoms to form chloroform. This sequence of events leads to lipid peroxidation and consequent liver injury (37). Administration of CCl₄ alone decreased the activity of CAT and SOD in the liver. Further, the level of GSH was also reduced in the liver. The declined antioxidant enzyme activity is responsible for the increased lipid peroxidation measured as thiobarbituric acid reacting substance MDA, which leads to loss of membrane fluidity, membrane integrity, and finally loss of cell functions of liver (38, 39). This injury to the hepatocytes alters their transport function and membrane permeability, leading to the leakage of enzymes from the cells (40). The treatment of the extract increased the hepatocyte SOD, CAT activities and reduced lipid peroxidation, which could effectively prevent radical mediated loss of membrane integrity. Hence, the extract-treated animals showed reduced transaminases activity in the serum.

Reduced glutathione (GSH) plays a key role in the detoxification of the reactive toxic metabolites of CCl₄; liver necrosis is initiated when reserves of GSH are markedly depleted (41). This is evident from the decreased level of hepatic GSH in animals treated with CCl₄ alone. The level was enhanced moderately in extract plus CCl₄ treated animals. Histopathological studies were performed to provide direct evidence of the hepatotoxicity of CCl₄ and hepatoprotective effect of ethanolic extract of C. indica. Marked disruption of the structure of hepatocytes was noted in liver tissue of animals exposed to CCl₄ alone. Only minimal disruption of the structure of hepatocytes was observed in liver tissue sections of animals treated with CCl₄ and extract. This observation complemented the results of the liver enzyme studies. Thus it can be concluded that the ethanolic extract of Calocybe indica is able to confer protection against hepatotoxicity induced by CCl₄ in mice, which might be through the antioxidant defense mechanism.

REFERENCES

2166
37. ElSisi A.E., Earnest D.L. and Sipes I.G., Vitamin A potentiation of carbon tetrachloride hepatotoxicity: role of liver macrophages and
