Atropine Sulphate in General and GMP Regulation

Ankita Singh*, P.K. Sharma, Nitin Kumar, Rupesh Dudhe
Department of pharmaceutical Technology,
Meerut Institute of Engineering & Technology
Meerut, U. P., India, Pin-250005
*Corres. Author : singhank08@gmail.com, Contact No. 9450720452

ABSTRACT: Atropine is an alkaloid with the chemical formula C_{17}H_{23}NO_3. It belongs to the tropane group of alkaloids, with tropane being a nitrogenous bicyclic organic compound with chemical formula C_{8}H_{15}N. Tropine is mainly known for a group of alkaloids derived from it (called tropane alkaloids).

The regulations set contain good manufacturing practice for methods to be used in the facilities or controls to be used for, the manufacture, processing, packing, holding of a drug to assure that such drug meets the requirements of the act as to safety and has identity, strength and meets the quality and purity characteristics that it purports or is represented to possess. What manufacturers need today is a more efficient handling of products and utilization of assets with compliance maintained. At the same time, the requirements from the FDA as well as other authorities are increasing, in particular regarding automated lines and the handling of electronic production data. Optimizing your manufacturing processes and shortening your lead-times is our mission. Our focus spans incoming to outgoing goods, from simple to highly automated lines, always with GMP regulations compliance at heart. Most importantly, we work in partnership with our customers in pursuit of efficiency and cost-effectiveness.

KEYWORDS: Atropine Sulphate eye ointment, GMP Regulation, Advancement & Future outlook of atropine ointment.

INTRODUCTION

OPHTHALMIC PRODUCTS

These are the products which are to be instilled into the eye in the space between the eye lids & eye balls.

Ophthalmic preparation must be sterile and are prepared under the same condition and method as other parenteral preparations. They should be supplied on the single use container and any solution remaining at the end of the operation must be discarded.

Fig: 1 Various purposes of Ophthalmic preparation
CLASSIFICATION OF OPHTHALMIC PRODUCTS

Table-1 Some formulation of ophthalmic product

<table>
<thead>
<tr>
<th>PREPARATION</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. LIQUIDS</td>
<td>Eye Drops, Eye Lotion</td>
</tr>
<tr>
<td>2. SEMI SOLIDS</td>
<td>Eye Ointment, Creams, Gels</td>
</tr>
<tr>
<td>3. INJECTIONS</td>
<td>Antisecretory (Atropine)</td>
</tr>
</tbody>
</table>

ATROPINE SULPHATE EYE OINTMENT: AT A GLANCE

- Atropine is obtained from Atropa belladonna & is d, l-hyoscamine.
- L-isomer is more potent.
- Category- anticholinergic agent (Parasympathetic antagonist).

ATROPINE SULPHATE EYE OINTMENT

Atropine sulphate ophthalmic ointment is atropine sulphate in a suitable ophthalmic ointment base, it contain not less than 90% & not more than 110% of the labeled amount of \((C_{17}H_{23}NO_{3})_2 \cdot H_2SO_4 \cdot H_2O\).

MODE OF ACTION

Atropine blocks the receptors in the muscles of the eye (muscarinic receptors). These receptors are involved in controlling the pupil size and the shape of the lens. By blocking these receptors, atropine produces dilatation of the pupil (mydriasis).

Effect and Precaution of Atropine Sulfate Ointment

1. SIDE EFFECT
 - Dryness of mouth
 - Temporary drowsiness or blurred vision
 - Rash, Itching, Swelling, Dizziness

2. ADVERSE EFFECT
 - Hallucinations
 - An Irregular or Fast Heart Rate
 - Swelling Of Your Lips, Tongue, Face

3. PRECAUTIONS
 - Not use in glaucoma (narrow angle), Down’s syndrome, allergies
 - Do not wear soft contact lenses while using Atropine Sulfate because the lenses may discolor.
 - Use caution when using Atropine Sulfate in children

USES

- Dilating the pupil to aid examination of the eye
- Inflammation of the coloured part of the eye and the muscle
- It is also used for certain eye exams.

STORAGE

A. Store at room temperature between 59 and 86 °F (15 - 30 °C) away from moisture and sunlight.

B. Do not freeze Atropine Sulfate.
C. Store solution in a cool and dark place.
D. Discard the solution if it turns brown, cloudy or contains particles.
E. Do not save for later use.
CHEMICAL PROPERTIES OF ATROPINE SULPHATE AS EYE OINTMENT

Table 2: Chemical Properties of Atropine Sulphate as Eye Ointment

<table>
<thead>
<tr>
<th>PROPERTIES</th>
<th>SPECIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Atropine sulphate</td>
</tr>
<tr>
<td>IUPAC name</td>
<td>Benzeneacetic acid, alpha- (hydroxymethyl)-8-methyl-8-azabicyclo{3.2.1}oct-3-yl ester, sulfate</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>((C_{17}H_{23}NO_3)_2\cdot H_2SO_4 \cdot H_2O)</td>
</tr>
<tr>
<td>Molecular Mass</td>
<td>694.82</td>
</tr>
<tr>
<td>Melting point</td>
<td>190 to 194°C</td>
</tr>
<tr>
<td>Physical state</td>
<td>Odourless, very bitter, Colorless crystals or White crystalline powder</td>
</tr>
<tr>
<td>Solubility</td>
<td>• One gram dissolves in 0.4 ml water.</td>
</tr>
<tr>
<td></td>
<td>• One gram dissolves in 5 ml cold alcohol and 2.5 ml boiling alcohol, in 2.5 ml glycerol, 420 ml chloroform and 3,000 ml ether.</td>
</tr>
<tr>
<td>Optical properties</td>
<td>Inactive Optically</td>
</tr>
<tr>
<td>(pK_a)</td>
<td>9.8</td>
</tr>
<tr>
<td>(pH^*)</td>
<td>A 2% solution in water has a pH of 4.5 to 6.2</td>
</tr>
</tbody>
</table>

GMP REGULATION OF ATROPINE SULPHATE EYE OINTMENT

GENERAL PROVISION FINISHED PRODUCT

FINISHED PRODUCT TESTING

- **Microbial Test**
 - Staphylococcus aureus + agar media
 - Pseudomonas aeruginosa + agar media

- **Physical Tests**
 - Subjective observation
 - Quantitative physical measurement
 - Colour
 - Odour
 - Appearance
 - Particle Size
 - Specific Gravity
 - Viscosity

- **Chemical Tests**
 - Chemical potency test
 - Content uniformity test

Fig 3: General outline of quality control of eye ointment

PERSONNEL

1. All personnel (including those concerned with cleaning, maintenance or quality control) employed in areas where biological medicinal products are manufactured should receive additional training specific to the products manufactured and to their work.
2. Personnel should be given relevant information and training in hygiene and microbiology.
3. Personnel should have proper knowledge of ointment manufacturing in sterile area.
4. Persons responsible for production and quality control should have an adequate background in relevant scientific disciplines, such as bacteriology, biology, biometry, chemistry, medicine, pharmacy, pharmacology, virology and veterinary medicine.
5. The immunological status of personnel may have to be taken into consideration for product safety. All personnel engaged in production, maintenance, testing and animal care (and inspectors) should be vaccinated.

BUILDINGS

Due to the variability of biological products or processes, some additives or ingredients have to be measured or weighed during the production process (e.g. buffers). In these cases, small stocks of these substances may be kept in the production area. Control panel visually shows all operations of the plant on a mimic display. Continuously variable speed control of the mixing arm is achieved by AC frequency controller. Digital display of product temperature and current values on the control panel

1. The building shall be built on proper foundation with standard materials to avoid cracks in critical areas like aseptic solution preparations are needed.
2. Location of services like water, steam, gases etc. shall be such that there is no problem in production.
3. In aseptic areas

LIQUID FILLER EQUIPMENT

- Capacities range from 15ml up to 1 gallon neck finishes of 28 mm and larger.
- Facilitated by warming the product to reduce the viscosity.
- Careful to avoid: chemical degradation, sedimentation of suspended solid if excessive reduction in viscosity by heating.

For viscous product that contain surfactants, prone to aeration

- accelerate oxidation
- produce bubbles
- interfere with pumping - right amount of product not delivered to the container

RAW MATERIAL

Table 3: Required raw materials

<table>
<thead>
<tr>
<th>Raw Materials</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ointment Base</td>
<td>Yellow Soft Paraffin, Liquid Paraffin, Hard Paraffin, Lanolin</td>
</tr>
<tr>
<td>2. Drug</td>
<td>Atropine sulphate</td>
</tr>
<tr>
<td>3. Antimicrobial agent</td>
<td>Benzalkonium Chloride (0.01% w/v), Benzyl alcohol (1-2% w/v), Phenylmercuric salts (0.002% w/v)</td>
</tr>
<tr>
<td>4. Antioxidant Agent</td>
<td>Bisulphites, Butylated hydroxy anisole.</td>
</tr>
<tr>
<td>5. Emulsifier</td>
<td>Anionic-- Alkyl sulfates, Cationic-- Quaternary ammonium, Nonionic-- Polyoxyethylene fatty acid</td>
</tr>
<tr>
<td>6. Gelling Agents</td>
<td>Tragacanth, Sodium Alginate</td>
</tr>
<tr>
<td>7. Permeation Enhancer</td>
<td>Menthol, Carvacrol, Geraniol, Nerolidol, Lecithin</td>
</tr>
<tr>
<td>8. Humectants</td>
<td>Poly Ethylene Glycol, Glycerol or Sorbitol</td>
</tr>
<tr>
<td>9. Fragrances</td>
<td>Lavender oil, Rose oil, Lemon oil, Almond oil</td>
</tr>
</tbody>
</table>
PRODUCTION & CONTROL OF ATROPINE EYE OINTMENT

a) GENERAL STEPS OF MANUFACTURING PROCESS OF OINTMENT

b) IN PROCESS QUALITY CONTROL
Sterile formulations must meet a number of special criteria such as:

- a. Sterility
- Membrane filtration
- Direct inoculum
- Particulate material
- 0.5-5 micron Particles in clean area room
- Pyrogen free
- LAL test(Limulus Amoebocyte Lysate)
- Stability
- At 40 ± 2°C / 70 ± 5 % RH
- pH
- 6.2-6.8 (Isotonic to eyes)
- Osmotic pressure
- Uniformity of distribution of active ingredients
- Viscosity measurement
 - Capillary method, Ostwald viscometer

f. Osmotic pressure

g. Uniformity of distribution of active ingredients

h. Viscosity measurement
 - Capillary method, Ostwald viscometer

c) STANDARDISATION
1. We performed a comparative analysis of several batches of the new ointment immediately after preparation and upon holding under “accelerated aging” conditions (at 40 °C) for a time equivalent to 3-year storage under normal conditions. The ointment appears as an odorless homogeneous.

2. The quantitative analysis was performed by UV spectrophotometry. An exactly weighed
amount (~3 g) of the preparation was mixed with 10 ml of water in a 50 ml cone-shaped measuring flask with ground stopper and the content was vigorously agitated. To this mixture was added 10 ml of chloroform and stirring was continued for 10 min. Then the mixture was transferred to a separatory funnel and the bottom (chloroform) layer was discharged. The aqueous layer was transferred to a 50 ml measuring flask and the flask was filled with water to the mark (solution A). A 1-ml aliquot of solution A was placed into a 100-ml measuring flask and diluted with water to the mark (solution B). The optical density of solution B was measured in a 10 mm thick cell on a spectrophotometer tuned to the absorption maximum at 252 nm.

d) QUALITY CONTROL

1. **Assay (I.P., 1996)**

1 g of atropine sulphate, accurately weighed, is dissolved in 50 ml of glacial acetic acid, then titrated with 0.1 N perchloric acid VS, determining the endpoint potentiometrically. A blank determination is performed and any necessary corrections made. Each ml of 0.1 N perchloric acid should be equivalent to 67.68 mg of $\text{C}_{17}\text{H}_{23}\text{NO}_3 \cdot \text{H}_2\text{SO}_4$.

0.500 g of atropine sulphate is dissolved in 30 ml of anhydrous acetic acid R, warming if necessary. The solution is cooled then titrated with 0.1M perchloric acid and the end-point determined potentiometrically. 1 ml of 0.1M perchloric acid should be equivalent to 67.68 mg of $\text{C}_{34}\text{H}_{48}\text{N}_2\text{O}_{10}\text{S}$.

PACKAGING & LABELING OF ATROPINE SULPHATE EYE OINTMENT

Packaging Materials

Fabricated from:

- Metals
- Plastics, rubber
- Glass
- Any combination from the above

Containers for eye ointments

- Screw-capped amber glass
- Plastic pots but Methyl salicylate incompatible with plastic containers
- Collapsible metal tubes
- Tend to shed metal particles near their screw-threads

Ideal Closures

1. Seal the container to prevent loss of product
2. Withstand sterilization process
3. Prevent contamination by micro-organism
4. Non-reactive
5. Easily remove and replace the closure and reseal (best reseal with glass fusion)

Table 4: List of Packaging materials of ophthalmic ointment

<table>
<thead>
<tr>
<th>Metals</th>
<th>Polymers – plastics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tin</td>
<td>1. High MW with good thermal and electrical insulators</td>
</tr>
<tr>
<td>Tin-coated tubes</td>
<td>2. Less rigid, but can be as strong as metals.</td>
</tr>
<tr>
<td>Eye ointment tubes</td>
<td>3. High degree of resistance to inorganic reagents but softened or dissolved by organic solvents.</td>
</tr>
<tr>
<td>Iron</td>
<td>E.g. PTFE, PP, PC, PE</td>
</tr>
<tr>
<td>Fabrication of drums, screw caps</td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>Low atomic weight, very reactive.</td>
</tr>
</tbody>
</table>

1. Int. J. PharmTech Res. 2010, 2(3)
Types of closures
Some examples
I. Push-on
 o Bung
 o Oldest known closures
II. Screw-cap
III. Fusion – hermetic seal

(a) Bung (b) Screw-cap

Fig 5: Closures type

Labeling Of Atropine Sulphate Eye Ointment

Table-5 Labels Include On Ophthalmic Preparations

<table>
<thead>
<tr>
<th>Sr.No</th>
<th>Parameters</th>
<th>Instructions on label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>State route of administration</td>
<td>For external use only</td>
</tr>
<tr>
<td>2</td>
<td>Fully identify the product</td>
<td>The name and concentration of active ingredients</td>
</tr>
<tr>
<td>3</td>
<td>Statement on preservation</td>
<td>Confirm presence or absence of preservative</td>
</tr>
<tr>
<td>4</td>
<td>Direction for use</td>
<td>Ex: Add one drop to each eye morning and evening.</td>
</tr>
<tr>
<td>5</td>
<td>Statement on in use expiry date</td>
<td>Day, month, year</td>
</tr>
<tr>
<td>6</td>
<td>Storage requirements</td>
<td>‘Store in cool place’ or ‘Protect from light’</td>
</tr>
<tr>
<td>7</td>
<td>Identify patient</td>
<td>Patient’s name</td>
</tr>
<tr>
<td>8</td>
<td>Date of dispensing</td>
<td>Day, month, year</td>
</tr>
</tbody>
</table>

Format of label of atropine eye ointment

THE OINTMENT
100g
For: Mr. xx xxx
Age: 18 years (F)
Regd No: 184 FOR EXTERNAL USE ONLY
Date of dispensing: 10/9/99
Direction: To be applied in the affected part two or three times a day.
Dispensed by:
DOCUMENTATION

The manufacturing records of atropine sulphate ointment indicate the following details:-

Table 6: Documentation of atropine sulphate eye ointment

<table>
<thead>
<tr>
<th>Sr. no</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Raw material name</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Structural formula, molecular weight</td>
</tr>
<tr>
<td>2.</td>
<td>Chemical name</td>
</tr>
<tr>
<td>3.</td>
<td>Item number</td>
</tr>
<tr>
<td>4.</td>
<td>Date of issue</td>
</tr>
<tr>
<td>5.</td>
<td>Date of superseded, if any, or new material</td>
</tr>
<tr>
<td>6.</td>
<td>Signature of writer</td>
</tr>
<tr>
<td>7.</td>
<td>Signature of approval</td>
</tr>
<tr>
<td>B. Samples</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Safety requirement</td>
</tr>
<tr>
<td>2.</td>
<td>Sample plan and procedure</td>
</tr>
<tr>
<td>3.</td>
<td>Sample size and sample container to be use</td>
</tr>
<tr>
<td>4.</td>
<td>Preservation sample requirement</td>
</tr>
<tr>
<td>C. Retest program</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Retesting schedule</td>
</tr>
<tr>
<td>2.</td>
<td>Reanalysis to be perform to assure identity, strength, quality and purity</td>
</tr>
<tr>
<td>D. Specifications wherever applicable</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Description</td>
</tr>
<tr>
<td>2.</td>
<td>Solubility</td>
</tr>
<tr>
<td>3.</td>
<td>Identity</td>
</tr>
<tr>
<td>a.</td>
<td>Specific chemical test</td>
</tr>
<tr>
<td>b.</td>
<td>Infrared absorption</td>
</tr>
<tr>
<td>c.</td>
<td>Ultraviolet absorption</td>
</tr>
<tr>
<td>d.</td>
<td>Melting range</td>
</tr>
<tr>
<td>e.</td>
<td>Congealing point</td>
</tr>
<tr>
<td>f.</td>
<td>Boiling point or range</td>
</tr>
<tr>
<td>g.</td>
<td>Thin layer, paper, liquid or gas chromatography</td>
</tr>
<tr>
<td>4.</td>
<td>Purity and quality</td>
</tr>
<tr>
<td>a.</td>
<td>General completeness of solutions, pH, specific rotation, non-volatile residue, ash, acid-insoluble ash, residue on ignition, loss on drying, water content, heavy metals, arsenic, lead, mercury, selenium, sulphate, chloride, carbonates, acid value, iodine value, saponification value</td>
</tr>
<tr>
<td>b.</td>
<td>Specific quality tests, particle size, crystallinity characteristics, and polymorphic forms</td>
</tr>
<tr>
<td>c.</td>
<td>Specific purity tests, related degenerated products</td>
</tr>
<tr>
<td>5.</td>
<td>Assay, calculated either on anhydrous or hydrous basis</td>
</tr>
<tr>
<td>6.</td>
<td>Microbial limit test, especially for raw materials from natural sources</td>
</tr>
<tr>
<td>E. Test procedure</td>
<td></td>
</tr>
</tbody>
</table>
VALIDATION OF ATROPINE OINTMENT

- Written documentation
- Manufacturing parameter
- Testing parameter
- In process control
- Final product testing

ADVANCEMENT & FUTURE OUTLOOK OF ATROPIN EYE OINTMENT

Novel eye ointments are non greasy since they are made up of water washable bases. Hence they cause less irritation to skin and are superior to conventional semisolid dosage form.

Advancement by Need for combination therapy
- e.g., cromoglycate and corticosteroid for asthma and allergies

The need for a predetermined profile of drug delivery over a prolonged period of days, weeks, or months e.g., acute corneal infections, acute-becoming chronic inflammation, and corneal graft rejection episodes

Long-continued low dosage for therapy or prophylaxis e.g., for prevention of corneal graft rejection, prevention of recrudescence of inflammation and prevention of recurrence of hepatic disease.

Ocular indication of controlled-release systems
a) Short, topical ocular half-life. e.g., heparin for ligneous disease
b) Small, topical ocular, therapeutic index. e.g., pilocarpine for chronic open-angle glaucoma, possibly nucleoside, antiviral
c) Systemic side effects. e.g., timolol for glaucoma and cyclosporin A for graft rejection
The technologies described here represent small fraction of the development of drug delivery systems and few of them are still at experiment level. The need for research into drug delivery systems extends beyond ways to administer new pharmaceutical therapies. The safety and efficacy of current systems can be improved if their delivery rate, biodegradation, and site-specific targeting can be predicted, monitored, and controlled. Which the help of rapid advances in biotechnology, chemistry, and chemical engineering, it will be possible for researchers to obtain drug delivery systems with minimum side effects and maximum effectiveness.20

CONCLUSION

Atropine Sulfate Ophthalmic Ointment is Atropine Sulfate in a suitable ophthalmic ointment base. It contains not less than 90.0 percent and not more than 110.0 percent of the labeled amount of \(\text{C}_{17}\text{H}_{23}\text{NO}_3 \cdot \text{H}_2\text{SO}_4 \cdot \text{H}_2\text{O}\). It is sterile. Atropine ophthalmic causes the muscles in your eye to become relaxed. This widens your pupil. Your pupil will remain wide and will not respond to light. Atropine ophthalmic is used to dilate (widen) your pupil when you have an inflammatory condition or in post surgery situations in which this effect may be helpful. Atropine ophthalmic passes into breast milk in small quantities. Its effects on a nursing baby are unknown. Do not use atropine ophthalmic without first talking to your doctor if you are breast-feeding a baby. If you are over 65 years of age, there is a greater chance that you have increased pressure in your eyes. Novel eye ointments are non greasy since they are made up of water washable bases. Hence they cause less irritation to skin and are superior to conventional semisolid dosage form. Novel eye ointments now days are provided with nanoparticles and microspheres, which has an excellent emollient effect, with better spreadability, and less staining than oleaginous ointments. However both medicated and non-medicated creams provide very good emollient effects, oleaginous ointments are preferred for dry, chapped skin in an environment of low humidity because of its occlusive properties.

REFERENCES

2. Atropine ophthalmic Information on Uses, Dosage & Side Effects on Healthline_comSADDA.htm
5. Atropine Sulfate-Ophthalmic - Drug Information and Side Effects on Drug3k_com.htm
15. Pharmaceutical Labeling A Review Pharmainfo_net.htm
20. www.fda.gov/ohrms/dockets/ac/03/transcripts/3926T1.htm
