Antibacterial and Analgesic Effects of the Stem Barks of *Calophyllum inophyllum*

Uma Shankar Mishra*, P. Narasimha Murthy, Prasanta Kumar Choudhury, Ghanshyam Panigrahi, Sovan Mohapatra, Deepak Pradhan

Department of Pharmaceutical Analysis and Quality Assurance, Royal College of Pharmacy and Health Sciences, Andhapasara Road, Berhampur, District-Ganjam, Orissa, Pin -760002, India

*Corres. Author: drusmishra@rediffmail.com
Phone- +91 680 2260024, Fax- +91 680 2260025, Mobile- +91 94371 36478

ABSTRACT: In the present study the methanol and chloroform extracts of the dried stem barks of “*Calophyllum Inophyllum*” were prepared and compared with Standard drug for their anti-bacterial and analgesic activities. The antibacterial activities were evaluated against number of different bacterial strains by detecting minimum inhibitory concentration and zone of inhibition. The minimum inhibitory concentration values were compared with control and zone of inhibition were compared with standard ciprofloxacin. The analgesic activities of both extracts were compared with standard drug Aspirin by Hot plates method using Swiss albino mice.

Key words: *Calophyllum Inophyllum*, Antibacterial, Analgesic.

INTRODUCTION

Calophyllum inophyllum belongs to family clusiaceae (syn. Guttiferae) is a medium sized to large evergreen tree that average 8-20m in height with a broad spreading crown of irregular branches. The tree support a dense canopy of glossy elliptical leaves fragrant white flowers and large round nut. It grows along costal area and adjacent lower land forests although it occasional occur inland at higher elevation. A genus of evergreen trees, distributed in the tropics of Asia, mainly in the Indo-Malaysian region, Australia, Africa and tropical America. Along the East and West coasts of the Peninsula, Burma, the Andamans and Malay Peninsula, Ceylon. Essentially a littoral species East African Islands, Malaya, Australia, Polynesia. In India it is distributed in the coastal regions of Maharashtra, Karnataka, Kerala, Tamil Nadu, Andhra Pradesh, Orissa, and the Andamans; often it runs wild; also reported to be growing in Arunachal Pradesh. About seven species occur in India. Some species are ornamental and others yield timber, commercially classified as POON and oil. The following species are used medicinally in China, Indo China and the islands of the Indian Ocean *C. inophyllum* Linn. in Madagascar *C. laxiflorum* Drake, *C. parviflorum* Bojer., *C. tacamahaca* Willd. in the Antilles *C. calaba* Jacq. in Brazil *C. brasiliense* Camb. In different parts of India, the plant is known by different vernacular names /local names are English - Alexandra Laurel, Alexandrian Laurel, Hindi - Sultanachampa, surpunka, undi, Sanskrit - Nagachampa, punnaga, surangi, Oriya - Polang, ponngang, Tamil- Pinnai, punnagam. As per the ethnomedicinal information the various parts of calophyllum inophyllum possess medicinal properties. The fresh bark of *C. inophyllum* is used to treat diabetes. The fresh fruit and its oil used externally against rheumatism, in topical infection and
seborrhea in human adult1,5. The dried leaf and its
decotion used to cure rheumatism, skin-infections6,
cuts and sores7-9. The fresh leaves infusion are used to
cure bacterial infection, fungal infection and as
vermifuge/ pediculicide5. The resin are used orally as
an emetic and purgative10. Dried seed extract are used
against rheumatism in human adult11. The barks are
astringent and useful in internal hemorrhages. In
Cambodia the leaves are prescribed as an inhalation in
migraine and vertigo. In New Caledonia the gum
resins are applied to ulcerous wounds. In Java the trees
are supposed to possess diuretic properties1-2.

The reported chemical constituents present in c.
inophyllum are flavonoid compound Amentoflavone12,13, steroid compound campesterol14,15,
Arachidic acid lipid16, xanthone derivative
Brazilianxanthone16,17,
coumarin derivatives Calocoumarin-A, Calocoumarin-
B, Calocoumarin-C and Apetalolide18,19, and Beta
Amyrin a triterpene20.

All these above mentioned traditional uses indicate
that their must be some antibacterial and analgesic
properties lying with the plant. In the present
investigation both the methanol and chloroform
extracts were subjected for antibacterial and analgesic
activities studies.

MATERIALS AND METHODS

Plant material
The plant specimen was identified by Prof.
P.Jayaraman, Director, Plant Anatomy Research
Centre, Chennai. After authentication, fresh stem barks
were collected in bulk from young matured plants
from the forest region of Similipal Biosphere Reserve
of Mayurbhanj district Orissa in the month of august
2006. The stem barks were washed, shade dried and
milled in to coarse powder by a mechanical grinder.
The powder materials were passed through sieve
number 40 and used for further studies.

Preparation of extract
The dried powder barks were successively extracted in
soxhlet apparatus by using different solvents
(Petroleum Ether, Chloroform and Methanol) with
increasing order of polarity in the ratio of drug to
solvent (1:8) for 72 hours . Each extracts were
concentrated at reduced pressure using rotary
evaporator and further subjected for antibacterial and
analgesic activity studies. The type and extractive
yield of different extracts of C. Inophyllum were
observed and results of such observation are tabulated
in Table no 1.

Preparation of the tested organisms
The lyophilized forms of different strains of
microorganisms like Bacillus licheniformis (MTCC
429), Escherichia coli (MTCC 40), Proteus vulgaris
(MTCC 426), Pseudomonas aeruginosa (MTCC 424),
Shigella flexneri (MTCC 1457), Bacillus subtilis
(MTCC441), Staphylococcus aureus (MTCC 87),
Staphylococcus epidermidis (MTCC 2639) were
obtained from the Microbial Type Culture Collection
and Gene bank (MTCC), Chandigarh, India and the
bacterial strains Shigella boydii-8, Salmonella typhi-
59, Salmonella typhimurium NCTC-74, Vibrio
cholerae-811, Vibrio cholerae-854, Klebsiella
pneumoniae-14 and Klebsiella pneumoniae-725 were
collected from Division of microbiology, Jadavpur
university, Kolkata. The bacterial cultures were
maintained on Mueller-Hinton Agar (MHA) and were
subcultured in the microbiology laboratory of the
Royal college of Pharmacy and Health Sciences,
Berhampur, Orissa, India. The average number of
viable of organisms per ml of the stock suspensions
was determined by means of the surface viable
counting technique21. About (108-109) colony-forming
units per ml was used. Each time, a fresh stock
suspension was prepared; the experimental conditions
were maintained constant so that suspensions with
very close viable counts would be obtained.

Inoculation:
One loopful of an overnight grown nutrient broth
culture of each test organism served as the inoculums
for such antimicrobial activity determination. The
average size of inoculums was about 106 cells
contained in 3mm diameter of standard loop22.

**Determination of the minimum inhibitory
concentration (MIC)**
Nutrient agar medium (250ml) was prepared and
sterilized. Exactly 29 ml of media was dispersed in
each of the 8 conical flasks, plugged with cotton and
autoclaved. A Stock solution of Calophyllum
Inophyllum extract of 9mg/ml in 1% di-methyl
sulphoxide (DMSO) was prepared. Measured
quantities of the stock solution of extract were poured
to the molten nutrient agar media to prepare
concentration of 25, 50, 100, 200, 300 and 400\mu g/ml
and then poured in Petri dishes. The Petri dishes were
marked accordingly. One sterile nutrient agar plate
without extract but with equal volume of the solvent
served as the control plate. These plates were
refrigerated overnight for uniform diffusion of the
extract throughout the media. The plates were dried at
37\textdegree C by keeping them in the incubator. One loopful
(diameter-3mm) of an overnight grown peptone water
culture of each test organism was placed in petridish
marked by the checker board technique. The spot
inoculated plate was incubated at 37\textdegree C for 24 hours
and the MIC value obtained23-25. The experiment was
repeated in triplicate and average values were disclosed in the Table no 2 and 3.

Determination of zone of inhibition

For the determination of zone of inhibition, pure ciprofloxacin was taken as a standard antibiotic for comparison of the results. Two sets of three dilutions (50, 100 and 200 μg/ml) of *C. inophyllum* bark extract and ciprofloxacin (50, 100 and 200 μg/ml) were prepared in double distilled water in Mc Cartney bottles. Sterile nutrient agar plates were prepared and incubated at 37°C for 24hrs to check any sort of contamination. Two sterile filter paper discs (Whatmann no.1) of 6mm diameter were soaked in two different dilutions of crude extract and placed in appropriate position on the surface of the flooded plate, marked as quadrants at the back of the Petri dishes. The Petri dishes were incubated at 37 °C for 24 hrs and the diameter of the zone of inhibition were measured in mm. Similar procedure were adopted for the pure ciprofloxacin and the corresponding zone diameter were compared accordingly. The experiment was repeated in triplicate and average values were written in the Table no 4.

Acute toxicity and lethality (LD50) test

The Acute toxicity and lethality (LD50) test of methanol and chloroform extracts of *Calophyllum inophyllum* was determined in albino mice by administering the extracts orally to different groups at the dose level of 250, 500, 1000 and 2000 mg/kg body weight. All animals were observed for toxic symptoms and mortality for 72 hrs. No mortality was observed up to a dose level of 2000 mg/kg body weight. As per the ranking system European Economic Community (EEC) for acute oral toxicity, the LD50 dose of 2000 mg/kg and above is categorized as unclassified (EC Directive 83/467/EEC, 1983).

Determination of analgesic activity of the extracts by Hot plates Model

Swiss albino mice weighing between 20 to 25 gm of either sex were used and were maintained at 25±3°C. They were kept in a well ventilated animal house under the natural photo periodic condition in polypropylene cage and were fed standard pellet diet and water ad libitum. The animal experiment was conducted with prior approval of Institutional Animal Ethics Committee of Royal College of Pharmacy and Health Sciences, Berhampur, Orissa. The analgesic activity of *C. inophyllum* extracts were assessed using the Hot plate method. Thirty six mice of either sex were divided in six groups (n = 6). Group-1 animals treated with 1% DMSO (10 ml/kg, p.o.) as control and Group-2 with morphine sulphate (5 mg/kg, s.c.) as reference. Remaining groups (Group-3, 4, 5 and 6) were administered with chloroform and methanol extracts (in dose of 100 mg/kg and 200 mg/kg, p.o.) as test groups. At 30, 60, 120 and 180 min after administration, animals were lowered onto the surface of a hot plate (50±1.0°C) enclosed with cylindrical glass and the time for the animal to jump or lick the fore limb was noted as the reaction time (RT). Cut off time in the absence of a response was 15 sec to prevent the animals from being burnt.

RESULTS AND DISCUSSION

The results regarding the antibacterial activity of methanol and chloroform extracts obtained from stem barks of *Calophyllum inophyllum* are indicated in Table-2, 3 and 4. The minimum inhibitory concentration (MIC) and Zone of inhibition values (ZOI) were carried out by using fifteen different bacterial strains of both Gram +ve and Gram –ve microorganisms. The MIC of test compound compared with control group and ZOI values with standard ciprofloxacin. From the results of MIC values it indicates that the methanol extract of *Calophyllum inophyllum* showed significant antibacterial properties against Gram +ve and Gram –ve bacteria by agar dilution technique compared to chloroform extract. As per the MIC results obtained in Table-2 shows that *Pseudomonas aeruginosa* MTCC No-424, *Staphylococcus aureus* MTCC No-87 and *Staphylococcus epidermidis* MTCC-2639 were inhibited at the concentration of 25μg/ml and were highly sensitive to the extract. The strains *Bacillus Licheniformis* MTCC. No-429, *Bacillus subtilis* MTCC No-441, *Escherichia coli* MTCC NO-40 and *Klebsiella pneumoniae*14 were inhibited at the concentration of 50 μg/ml and were moderately sensitive. The remaining eight bacterial strains were found to be inhibited within the concentration range of 100-300μg/ml and were less sensitive to the extract. All the bacterial strains were inhibited within the concentration range of 25 to 300 μg/ml. Basing on MIC results, the methanol extract was selected for further antibacterial activity studies carried out by ZOI and the result was depicted in table no 4. It indicates that the antibacterial activity of *C. inophyllum* methanol extract was reduced in the order of *Bacillus Licheniformis* MTCC No-429 > *Bacillus subtilis* MTCC No-441 > *Pseudomonas aeruginosa* MTCC No-424 > *Escherichia coli* MTCC NO-40 > *Staphylococcus aureus* MTCC No-87 > *Staphylococcus epidermidis* MTCC-2639 > *Klebsiella pneumoniae*14 > *Proteus vulgaris* MTCC No-426 > *Shigella flexneri* MTCC No-1457 > *Shigella boydii*8 > *Vibrio cholerae*-811 > *Klebsiella pneumoniae*-725 > *Salmonella typhi*-59 > *Salmonella typhimurium* NCTC-74 > *Vibrio cholerae*-854.
The acute toxicity studies revealed an oral LD50 greater than 2000 mg/kg. The methanol extract of *Calophyllum Inophyllum* stem barks significantly (P < 0.05) and dose-dependently protected the mice against thermally induced pain stimulus. The reaction time after two hours at the dose of 100mg/kg and 200 mg/kg was found to be 11.1±0.22 and 12.8±0.20 respectively where as for standard drug, morphine sulphate (5mg/kg) found to be 13.9±0.14, while the reaction time in control group was 4.8±0.11 sec. In comparison to chloroform extract the effect of methanol extract found to be more protective (Table-5).

Preliminary Phytochemical analysis of the methanol extract of *Calophyllum Inophyllum* revealed the presence of tannins, polyphenolic compounds, flavonoids, saponins and terpenoids by using standard procedure for detection of phytoconstituents. Notably, both tannin and phenolics have been reported to possess antibacterial activity.

Table-1: Types and % yield of different extracts of *Calophyllum Inophyllum*

<table>
<thead>
<tr>
<th>Sl.no.</th>
<th>Plant part</th>
<th>Solvent used for extraction</th>
<th>Colour of the extracts</th>
<th>Physical appearance of the extracts</th>
<th>%Yield in (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stem bark</td>
<td>Petroleum ether</td>
<td>Yellowish brown</td>
<td>Sticky mass</td>
<td>6.43</td>
</tr>
<tr>
<td>2</td>
<td>Stem bark</td>
<td>Chloroform</td>
<td>Dark brown</td>
<td>Dried powder</td>
<td>2.01</td>
</tr>
<tr>
<td>3</td>
<td>Stem bark</td>
<td>Methanol</td>
<td>Reddish brown</td>
<td>Dried powder</td>
<td>21.08</td>
</tr>
</tbody>
</table>

Table-2: Determination of the minimum inhibitory concentration (MIC) of methanol extract of *Calophyllum inophyllum*

<table>
<thead>
<tr>
<th>Sl. no</th>
<th>Name of the Bacteria</th>
<th>Concentrations of methanol extract (µg/ml).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Bacillus licheniformis MTCC. No-429</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Bacillus subtilis MTCC No-441</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Proteus vulgaris MTCC No-426</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Pseudomonas aeruginosa MTCC No-424</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Shigella flexneri MTCC No-1457</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Shigella boydii-8</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Escherichia coli MTCC NO-40</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Staphylococcus aureus MTCC No-87</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>Staphylococcus epidermidis MTCC-2639</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>Salmonella typhi-59</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>Salmonella typhimurium NCTC-74</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>Vibrio cholerae-811</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>Vibrio cholerae-854</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>Klebsiella pneumoniae-14</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>Klebsiella pneumoniae-725</td>
<td>+</td>
</tr>
</tbody>
</table>

‘0’ stands for plain nutrient agar without the drug serving as control ‘+’ stands for growth and ‘-’ stands for no growth.
Table-3: Determination of the minimum inhibitory concentration (MIC) of Chloroform extract of *Calophyllum inophyllum*

<table>
<thead>
<tr>
<th>SI. no</th>
<th>Name of the Bacteria</th>
<th>Concentration of chloroform extract (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Bacillus Licheniformis MTCC. No-429</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Bacillus subtilis MTCC No-441</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Proteus vulgaris MTCC No-426</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Pseudomonas aeruginosa MTCC No-424</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Shigella flexneri MTCC No-1457</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Shigella boydii-8</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>Escherichia coli MTCC NO-40</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Staphylococcus aureus MTCC No-87</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>Staphylococcus epidermidis MTCC-2639</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>Salmonella typhi-59</td>
<td>+</td>
</tr>
<tr>
<td>11</td>
<td>Salmonella typhimurium NCTC-74</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>Vibrio cholerae-811</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>Vibrio cholerae-854</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>Klebsiella pneumoniae-14</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>Klebsiella pneumoniae-725</td>
<td>+</td>
</tr>
</tbody>
</table>

‘0’ stands for plain nutrient agar without the drug serving as control ‘+’ stands for growth and ‘-’ stands for no growth.

Table-4: Determination of Zone of inhibition of methanol extract of *Calophyllum Inophyllum* stem bark

<table>
<thead>
<tr>
<th>SI.No</th>
<th>Name of the Bacteria</th>
<th>Methanol extract (µg/ml)</th>
<th>Ciprofloxacin (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>Bacillus Licheniformis MTCC. No-429</td>
<td>7.50</td>
<td>9.00</td>
</tr>
<tr>
<td>2</td>
<td>Bacillus subtilis MTCC No-441</td>
<td>7.00</td>
<td>9.00</td>
</tr>
<tr>
<td>3</td>
<td>Proteus vulgaris MTCC No-426</td>
<td>7.00</td>
<td>8.00</td>
</tr>
<tr>
<td>4</td>
<td>Pseudomonas aeruginosa MTCC No-424</td>
<td>8.00</td>
<td>9.50</td>
</tr>
<tr>
<td>5</td>
<td>Shigella flexneri MTCC No-1457</td>
<td>7.50</td>
<td>8.50</td>
</tr>
<tr>
<td>6</td>
<td>Shigella boydii-8</td>
<td>7.00</td>
<td>8.00</td>
</tr>
<tr>
<td>7</td>
<td>Escherichia coli MTCC NO-40</td>
<td>7.50</td>
<td>8.50</td>
</tr>
<tr>
<td>8</td>
<td>Staphylococcus aureus MTCC No-87</td>
<td>7.50</td>
<td>9.00</td>
</tr>
<tr>
<td>9</td>
<td>Staphylococcus epidermidis MTCC-2639</td>
<td>8.00</td>
<td>9.50</td>
</tr>
<tr>
<td>10</td>
<td>Salmonella typhi-59</td>
<td>7.00</td>
<td>8.50</td>
</tr>
<tr>
<td>11</td>
<td>Salmonella typhimurium NCTC-74</td>
<td>6.50</td>
<td>7.50</td>
</tr>
<tr>
<td>12</td>
<td>Vibrio cholerae-811</td>
<td>7.00</td>
<td>8.50</td>
</tr>
<tr>
<td>13</td>
<td>Vibrio cholerae-854</td>
<td>7.00</td>
<td>8.00</td>
</tr>
<tr>
<td>14</td>
<td>Klebsiella pneumoniae-14</td>
<td>7.50</td>
<td>8.50</td>
</tr>
<tr>
<td>15</td>
<td>Klebsiella pneumoniae-725</td>
<td>7.00</td>
<td>8.00</td>
</tr>
</tbody>
</table>

Values are Zone of inhibition (mm); tests were done in triplicate.
Table-5: Evaluation of analgesic activity of methanol and chloroform extracts of *Calophyllum inophyllum* bark by hot plate method.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Treatment</th>
<th>Dose (mg/kg body wt)</th>
<th>Basal reaction time</th>
<th>Reaction time (in sec.) after administration of drugs in minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control (1% DMSO)</td>
<td>10 ml/kg</td>
<td>4.5±0.12</td>
<td>5.0±0.07, 4.9±0.09, 4.8±0.11, 5.1±0.05</td>
</tr>
<tr>
<td>2</td>
<td>Morphine sulphate</td>
<td>5 mg/kg</td>
<td>4.7±0.09</td>
<td>9.7±0.13*, 12.8±0.18*, 13.9±0.14*, 13.4±0.07*</td>
</tr>
<tr>
<td>3</td>
<td>Chloroform extract</td>
<td>100mg/kg</td>
<td>4.9±0.10</td>
<td>5.7±0.21, 6.9±0.14, 8.5±0.09, 8.9±0.08</td>
</tr>
<tr>
<td>4</td>
<td>Chloroform extract</td>
<td>200mg/kg</td>
<td>4.7±0.21</td>
<td>6.6±0.15, 8.6±0.19, 9.5±0.20*, 9.9±0.13*</td>
</tr>
<tr>
<td>5</td>
<td>Methanol extract</td>
<td>100mg/kg</td>
<td>4.8±0.15</td>
<td>7.1±0.11*, 10.4±0.27*, 11.1±0.22*, 11.1±0.19*</td>
</tr>
<tr>
<td>6</td>
<td>Methanol extract</td>
<td>200mg/kg</td>
<td>4.5±0.22</td>
<td>8.3±0.24*, 11.6±0.25*, 12.8±0.20*, 12.5±0.26*</td>
</tr>
</tbody>
</table>

*P< 0.05 compared to Morphine sulphate and control respectively. All values are expressed in Mean ± Standard deviation, n=6

CONCLUSION
Herbs are an integral part of nature. Plants contain natural substance that can promote health. From the present investigations it can be concluded that the antibacterial and analgesic activities of *Calophyllum Inophyllum* stem barks may be due to the combined or individual effect of the phytoconstituents found, which can be further confirmed by the extensive studies. The antimicrobial and analgesic activities of this plant highlighted the importance of the extracts in traditional preparations. Basing on the above results we can further conclude that the *Calophyllum inophyllum* plant may be helpful in treating various kinds of diseases in future days.

ACKNOWLEDGMENTS
The authors would like to thanks the Microbial Type Culture Collection and Gene bank, Chandigarh and Prof. S. G. Dastidar, Division of microbiology, Jadavpur University, Kolkata, India for supply of test microorganisms. We are highly thankful to Prof. P.Jayaraman, Director, Plant Anatomy Research Centre, Chennai for authentication and identification of the plant.

REFERENCES
5. Clatchey M.C., W. The Ethnopharmacopoeia of Rotuma J Ethnophamacol, 1996, 50(3), 147-156. [Source was an original research paper. Univ florida florida museum natural history herbarium gainesville FL 32611 USA]
10. Morton, J. F., Ornamental Plants With Toxic and/or Irritant Properties. II., Proc Fla State Hort Soc, 1962, 75, 484
