

International Journal of ChemTech Research CODEN(USA): IJCRGG ISSN : 0974-4290 Vol.2, No.1, pp 16-20, Jan-Mar 2010

SYNTHESIS AND ANTIHISTAMINIC ACTIVITY OF NOVEL PYRAZOLINE DERIVATIVES

S.A.RAHAMAN*², Y.RAGJENDRA PRASAD¹, K.BHUVANESWARI², PHANI KUMAR¹

¹UNIVERISTY COLLEGE OF PHARMACEUTICAL SCIENCES, ANDHRA UNIVERSITY, VISHAKHAPATNAM-530003, A.P., INDIA.

²DEPARTMENT OF PHARMACEUTICAL CHEMISTRY, KVSR SIDDARTHA COLLEGE OF PHARMACEUTICAL SCIENCES, SIDDARTHA NAGAR, VIJAYAWADA-520010,A.P.,INDIA.

*Corres.author: rahaman_pharma@rediffmail.com

ABSTRACT: Pyrazolines are one of the heterocyclic compounds with very important biological activities. In this view, it was proposed to synthesize some novel pyrazolines from chalcones. The condensation of chalcones of 4^1 -piperazine acetophenone with phenyl hydrazine hydrochloride gives pyrazoline derivatives(RP₁₋₈). The structures of the synthesized RP₁₋₈ were assigned on the basis of elemental analysis, IR and ¹H NMR spectroscopy data. These compounds were also screened for their anti-histaminic activity. The recorded % of histamine inhibition showed significant anti-histaminic activity, when compared with standard antihistamine drug mepiramine.

Key words: Chalcone, pyrazoline, anti-histaminic activity.

INTRODUCTION

Pyrazolines are heterocyclic compounds which posses wide range of biological activities such as anti bacterial^{1,2}, anti depressant^{3,4}, anti tubercular^{5,6}, amoebic^{7,8}, anti inflammatory⁹, herbicidal insecticidal^{10,11}, cardiovascular¹² activity etc. anti & То synthesize pyrazoline derivatives, we selected chalcone as starting material. Generally chalcones are 1,3-diaryl-2-propene-1-ones. In the present communication, we report the reaction of different chalcone derivatives(1) with phenylhydrazine hydrochloride(2) to form pyrozalines $RP_{(1-8)}$. The structures of various synthesized compounds were assigned on the basis of elemental analysis, IR and ¹H NMR spectral data. These compounds were also screened for antihistaminic activity.

EXPERIMENTAL

All the melting points were determined by digital melting point apparatus. The ¹H NMR spectral data were recorded on Bruker AV 400 MHZ in DMSO using TMS as an internal standard. The IR spectra were recorded on Perkin-Elmer 377 spectrophotometer.

General procedure for the preparation of pyrazoline derivatives RP₍₁₋₈₎:

A mixture of chalcones of 4¹-piperazino acetophenone(1eq.) and phenylhydrazine hydrochloride(1eq.) in absolute ethanol (10ml) were refluxed on a water bath for 6 hours¹³. The solvent was completely evaporated and the residue was poured into ice cold water. The precipitated solid was collected by filtration and crystallized from methanol as solvent to give pyrazoline derivatives RP₁₋₈.

Compund	R	R ¹	R ²	Molecular Formula	M.P. (°C)	Yeild (%)
RP_1	Н	Н	Н	$C_{25}H_{26}N_4$	164-166	68.5
RP ₂	Н	Н	Cl	C ₂₅ H ₂₅ N ₄ Cl	196-198	71.45
RP ₃	Н	Br	Н	C ₂₅ H ₂₅ N ₄ Br	204	65.8
RP ₄	ОН	Н	Н	C ₂₅ H ₂₆ N ₄ O	173-175	72
RP ₅	ОН	Н	-OCH ₃	C ₂₆ H ₂₉ N ₄ O ₂	138-140	67.4
RP ₆	Н	Н	-N-CH3 CH3	C ₂₇ H ₃₀ N ₅	184-185	71.8
RP ₇	Н	Н	-NO ₂	C ₂₅ H ₂₅ N ₅ O ₂	214-216	76
RP ₈	Cl	Н	Cl	C ₂₅ H ₂₄ N ₅ Cl	222-224	81

Table-1: Physical Data of Compounds (RP1-RP8)

Compound	IR (cm ⁻¹)	¹ H NMR(CDCl ₃)(SPPM)	
		(i)2.5 (1H, bS, N-H)	
	3422.4N-H str	(ii)3.19 & 3.37	
RP_1	1597.4C=N str	(8H, piperazinylprotons)	
	1515.6C=C str	$(iii)3.37 (1H, dd, 4H_A)$	
		$(iv)3.85 (1H, dd, 4H_B)$	
		$(v)5.5(1H, dd, 5H_{C})$	
		(vi)6.97-7.62(14H,m, aromatic Protons)	
		(i)2.46 (1H , bS , N-H)	
	3427N-H str	(ii)3.18 & 3.47 (8H, piperazinyl protons)	
RP ₂	1599.5C=N str	(iii)3.0 (1H , dd , 4H _A)	
	1496C=C str	$(iv)3.91 (1H, dd, 4H_B)$	
		$(v)5.41 (1H, dd, 5H_{C})$	
		(vi)6.6-7.83(13H,m, aromatic protons)	
		(i)2.5 (1H , bS , N-H)	
	3399.3N-H str	(ii)3.17 & 3,54 (8H, piperazinyl protons)	
RP ₃	1596.6C=N str	$(iii)3.09 (1H, dd, 4H_A)$	
	1496C=C str	$(iv)3.9(1H, dd, 4H_B)$	
		$(v)5.4 (1H, dd, 4H_B)$	
		(vi)6.68-8.0(13H,m, aromatic protons)	
		(i)1.9 (1H, bS, N-H)	
DD	3399.3N-H str	(ii)2.6&3.4(8H,piperazinyl protons)	
RP_4	1596.6C=N str	$(iii)3.1 (1H, dd, 4H_A)$	
	1506.6C=C str	$(iv)3.84 (1H, dd, 4H_B)$	
		$(v)5.56 (1H, dd, 5H_{C})$	
		(vi)6.7-7.7(13H,m, aromatic protons)	
	2402 N.Ht.	(i)2.5 (1H , S , N-H)	
	3403N-H str	(ii)3.2&3,47(8H, Piperazinyl protons)	

1701 4 C N 4	$(''')_{2,00}(111, 11, 411)$		
	$(iii)3.02 (1H, dd, 4H_A)$		
1508.3C=C str	$(iv)4.0 (1H, dd, 4H_B)$		
	$(v)5.5(1H, dd, 5H_{C})$		
	(vi)6.71-7.7(12,m, aromatic protons)		
	(i)2.5 (1H, s, N-H)		
3418 N-H str	(ii)3.2 & 3.47 (8H, piperazinyl protons)		
1581.4C=N str	$(iii)3.02 (1H, dd, 4H_A)$		
1513 C=C str	$(iv04.05 (1H, dd, 4H_B))$		
	$(v)5.34 (1H, dd, 5H_{C})$		
	(vi)6.64-7.07 (13H, m, aromatic Protons)		
	(i)2.5 (1H, bS, N-H)		
3420.6 N-H str	(ii)3.21(8H,piperazinyl protons)		
1596 C=N str	$(iii)3.1 (1H, dd, 4H_A)$		
1521C=C str	$(iv)3.97 (1H, dd, 4H_B)$		
	$(v)5.62 (1H, dd, 5H_{C})$		
	(vi)6.69-8.28(13H, m, aromatic protons)		
	(i)1.85 (1H, bS, N-H)		
3428 N-H str	(ii)3.34 & 3.47 (8H, piperazinyl protons)		
1597.5 C=N str	$(iii)2.9 (1H, dd, 4H_A)$		
1501C=C str	$(iv)3.82 (1H, dd, 4H_B)$		
	(v)5.47 (1H, dd, 5H _c)		
	(vi)6.87-7.57 (12H, m, aromatic protons)		
	1581.4 C=N str 1513 C=C str 3420.6 N-H str 1596 C=N str 1521 C=C str 3428 N-H str 1597.5 C=N str		

ESTIMATION OF ANTI-HISTAMINIC ACTIVITY

The compounds $(RP_1 - RP_8)$ were evaluated for their anti-histaminic activity on guinea pig ileum. Guinea Pig of either sex 400-500 grms., were used in this study. These animals were sacrificed by stunning and exsanguinations. The abdomen was opened with scissors and lifted the caecum to trace the illeo-caecal junction. A required length of the long ileal portion was cut, removed and immediately placed on the watch glass containing tyrode solution. Then the mesentery was trimmed and with gentle care the contents of the ileum were cleaned by pumping the tyrode solution into the lumen of the ileum. The ileum was cut into small segments of 2 to 3 cms., length. One piece of ileum was taken and a thread was tied to the top & bottom ends without closing the lumen and the tissue was mounted in the organ bath containing tyrode solution, maintained at 37^{0} C and bubbled with oxygen air. A tension of 0.5grm is applied and the tissue is allowed to equilibrate for 30 minutes before adding drugs to the organ bath.

The concentration dependent Reponses due to histamine were recorded using frontal writing lever. A contact time of 30 seconds and 5 minutes are kept for proper recording of the responses. Initially histamine dose was given with a concentration of 0.1 ug/ml, 0.4

ug/ml and 0.8 ug/ml. From that 0.4 ug/ml concentration was selected as sub-maximal dose.

Test Solution Preparation: 10 mg of each test sample was dissolved in DMSO solvent. Different solutions were made with DNS (Dextrose Normal Saline), solution to get a concentration of 0.1 ug/ml, 0.2 ug/ml, 0.4 ug/ml and 0.8 ug/ml.

Standard Solution Preparation: 10 mg of mepiramine sample was dissolved in DNS solution. The different dilutions of standard solutions were prepared to get concentrations of 0.1 ug/ml, 0.2 ug/ml, 0.4 ug/ml and 0.8 ug/ml.

The responses were recorded on a kymograph. The graph was plotted taking concentration of the test or standard on X-axis and % inhibition on Y-axis. The % inhibitions were calculated and values are shown in the table.

% histamine inhibition = $\frac{a-b}{a} \ge 100$

Where a=height of histamine response (in cm) b= height of test or standard response (in cm)

Sample code	0.1 ug	0.2 ug	0.4 ug	0.5 ug	
RP ₁	4.5	10.6	21.4	42.8	
RP ₂	11.3	25.2	49.7	66.66	
RP ₃	10.8	27.8	44.9	58.0	
RP ₄	7.4	21.5	33.33	49.02	
RP ₅	6.2	20	28.4	49.8	
RP ₆	9.4	22.24	32.5	47.6	
RP ₇	2.5	10.8	26.7	37.2	
RP ₈	15.25	38.9	52.4	74.6	

% Histamine inhibiton of newly synthesized Pyrazolines

RESULTS AND DISCUSSION

- The eight novel pyrazolines were synthesized by condensation of various chalcones of 4'piperazine acetophenone with phenyl hydrazine hydro chloride in ethanol and pyridine. After that the compounds were purified either by crystallization (or) column chromatography. The structures of the synthesized compounds were established on the basis of spectral data.
- The newly synthesized pyrazoline derivatives showed moderate to considerable antihistaminic activity. Among the eight pyrazoline derivatives only electron with drawing substituent i.e. halogen substituted compounds RP₂, RP₃& RP₈ showed better antagonistic activity.
- The significant out come of the study is the emergence of pyrazolines with piperazine nucleus as promising anti-histaminic agents in general. An extension of the study in future may contribute to the development of useful anti-histaminic agents in this series.

ACKNOWLEDGEMENTS

Authors are thankful to the principal & management of K.V.S.R. Siddhartha College of Pharmaceutical Sciences for providing proper facilities to carry out the research work and Laila Impex Ltd., Vijayawada, A.P., India, for providing the ¹H NMR, IR and Mass spectral analysis.

REFERENCES

- 1. Ankhiwala , M.D. and Hathi , M.V. , Indian . J . Het .chem ,5(3), 229(1996).
- 2. Turanzitouni,Gulhan, ozdemir, Ahmet. and Guven ,Kiymet.Archiv, der.pharmazine., 338(2-3) ,96(2005).
- 3. Biligin ,A.A. ,Palaska ,E ,and Sunal ,R. Arzneimittel-Forsuhung.,43(10), 1041(1993).
- 4. Y.Ragendra Prasad.,A.Lakshmana Rao.,P.Ravi., Bio org Med. Chem. Lett.,15(22),5030(2005).
- 5. Kumar.M,Manoj.P. ,R.Ajay and T.K.Ravi., Indian J.Pharm.Science., 67(6), 755(2005).
- 6. Abid Mohammad and Azam ,Amir., Bioorg Med. Chem.Lett., 16(10), 2812(1006).
- 7. Budakoti ,Asha., Abid ,Mohammad and Azim ,Amir. Eur.J.Med.Chm., 41(1), 63(2006).
- Grosscurt ,Arnold C. ,Vanher ,Roelof . and wellinga , Kobus .J.Agri.Food.Chem., 27(2), 406(1979).

- 9. Durza, Jhon ,P.Joseph ,P.,Bernstein ,Seymour ,US, II PP, (1984).
- Van Hes ,Rolf., Wellinga ,Kobus and Grosscurt ,Arnold C.J.Agri.Food Clum., 26(4) ,915(1978).
- 11. Eussen ,Jac ,H.H., and Wellinga Koos ,Stork bob.,Pesticide sci.,29(1),101(1990).
- Burger ,A.Burger's Medicinal Chemistry and drug discovery , John Wiley Publications Inc. Volume 2-6 , 5th edition(1995).
- 13. Sammour ,A.e.A. Tetrahedron., 20 ,1067(1967).
- 14. Rao ,K.S. and Raju , G.G. Ind. J. Chem., 34B ,143(1995).
- 15. Clari, P.S., chhabra, B.R., Alka .Chhabra, and Wadia, M.S. Tetrahedron., 35, 1993(1979).