Studies of Antibacterial Activities of Glycyrrhiza glabra Root Extract

Manoj M. Nitalikar*, Kailas C. Munde, Balaji V. Dhole, Sajid N. Shikalgar

Department of Pharmaceutics, SVERI's College of Pharmacy, Gopalpur, Pandharapur Dist. Solapur (M. S.), India

*Corres. author: manojnitalikar@lycos.com

Abstract: The licorice plant (Glycyrrhiza glabra Family Leguminoceae) has been used by physician and herbalists since the earliest of times. It is also known as “sweet roots”, which contains a compound that is roughly 50 times sweeter than sugar. Many of the claims for the effectiveness of licorice extracts have been shown by modern science to be credible, a root component (Glycyrrhizin) being generally regarded as the major biologically-active principle. Licorice extracts have been widely used in pharmaceutical and confectionery industries because of the presence of glycyrrhizin. A study was conducted to determine the antibacterial activities of Licorice root extract in ether, chloroform, acetone on bacteria using the well diffusion method. The extracts showed significant antibacterial activities against two gram-positive (Bacillus subtilis and Staphylococcus aureus) and two gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria.

It can be used in the folk medicine at different parts of the world to treat many diseases including bacterial infections.

Key words: Glycyrrhiza glabra, extract of roots, Antibacterial activity.

Introduction

For centuries plants have been used throughout the world as drugs and remedies for various diseases. Licorice (or liquorice) is a plant of ancient origin and steeped in history. It grows in subtropical climates in Europe, the Middle East, and Western Asia. Licorice extracts and its principle component, glycyrrhizin, have extensive use in foods, tobacco products, and nuss, and in traditional and herbal medicine. Licorice or Liquorice(Glycyrrhiza glabra), is a perennial herb which possesses sweet taste 1. Liquorice has extensive pharmacological effects for human being. The most common medical use liquorice is for treating upper respiratory ailments including coughs, hoarseness, sore throat and bronchitis. 2,3

Medicinal uses of licorice includes cough suppression, 4gastric ulcer treatment 5, treatment of early Addison disease 6,7, treatment of liver disease 8,9 and as a laxative. The anti-ulcerative activity has been demonstrated extensively and in China and Japan, licorice is clinically for the treatment of stomach ulcers 10, 11. Its preparations are used as a conditioning and flavoring agent in tobacco products. So far more than 80 different constituents of liquorice preparations (flavonoids, chalcones and coumarines) have been identified. Glycyrrhizic acid or glycyrrhizin is the main biologically active compound of the liquorice root. Glycyrrhizin possesses a sweet taste and sweetness-potentiating characteristics and have been employed industrially 12.

Health hazard of Glycyrrhizic acid present in liquorice were evaluated by some researchers 13. Glycyrrhiza glabra has shown promise as a memory enhancing agent in mice 14. A process for extraction of natural sweetener from licorice (Glycyrrhiza glabra) roots is suggested 15.

The healing power of herbs was reviewed by Murray MT 16. The effect of glycyrrhizin (GR) on HIV replication in cultures of peripheral blood mononuclear cells (PBMC) from HIV-infected patients was investigated 17. The antioxidant and antimicrobial constituents of licorice were studied by some researchers 18. The antimicrobial flavanones from the leaves of licorice were studied by Fukui, H., K, et al 19 and Li W. Y 20. Here an attempt has made to study the antibacterial effects of organic extracts of licorice roots.
Material and Method:

Plant material:
Dried roots of licorice were procured from Pandharpur (Maharashtra) and were authenticated from Prof. Dr. C. S. Suryavanshi (Taxonomist), Dr. Babasaheb Ambedkar University, Aurangabad (Maharashtra). The roots were powdered in a mixer grinder. The powder of roots was packed in paper bag and stored in air tight containers until use.

Preparation of extract:
Powered material was extracted with chloroform, acetone and ether by soxhalation method. Various extract s were evaporated in hot air oven at 45°C over a night. Extract is then used for further antimicrobial assay.

Antimicrobial study:\nAll the microbial strains are collected from Department of Microbiology of our College
Following table showing the microbial strains used.

Antimicrobial assay:-
Agar well-diffusion method: the agar diffusion method was used to screen the antibacterial activity of all extracts of roots of *Glycyrrhiza glabra*. Seeded broth containing test organism was inoculated on plats of solidified agar and spread uniformly. The 5 wells were cut in the agar layer of each plate with an aluminum bore of 6 mm diameter. In every plate 3 different extracts of concentration 1.2mg/ml in respective solvents (ether, chloroform and acetone). The concentration of tetracycline used for all agar plates as standard 5mg/ml and the concentration of streptomycin used was 7.5mg/ml. One positive control for each micro organism was prepared by adding nutrient broth with respective microorganism inoculums. Then all plates were incubated at 37°C ± 1for 24 hours. After the incubation period the mean diameter of the zone of inhibition in mm obtained around the well was measured which has been shown in table.

Result and discussion
The extracts of the roots of *Glycyrrhiza glabra* has shown magnificent antibacterial effect.
Although ethereal extract has shown good effect on *E. Coli* strain. The acetone extract has shown excellent effect than Streptomycin. Overall the acetone extract of the roots has shown significant antibacterial effect on studied organisms.

Conclusion
Glycyrrhiza glabra belonging to family Leguminocoeae is well known for its expectorant and demulcent activity. From the above study we can also conclude that it also exhibits good antimicrobial activity against various bacterial strains.

Observation table: Zone if inhibition in mm

<table>
<thead>
<tr>
<th>Extracts Microbial strain</th>
<th>Eth</th>
<th>Ace</th>
<th>Ch</th>
<th>Strepto</th>
<th>Tetra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram + ve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>22</td>
<td>32</td>
<td>18</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>19</td>
<td>22</td>
<td>16</td>
<td>22</td>
<td>34</td>
</tr>
<tr>
<td>Gram -ve</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas aerugenosa</td>
<td>14</td>
<td>22</td>
<td>14</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>E. Coli</td>
<td>16</td>
<td>15</td>
<td>11</td>
<td>22</td>
<td>36</td>
</tr>
</tbody>
</table>

Note: Eth: Ether, Ace: Acetone, Ch: Chloroform, Strepto: Streptomycin, Tetra: Tetracyclin
Acknowledgements
The authors are thankful to Prof. B. P. Ronge, Secretary, Shri Vithal Education and Research Institute’s College of Pharmacy for providing facilities for work. We are also thankful to Prof. Dr. C. S. Suryavanshi (Taxonomist) Department of Botany, Andur Science College, Andur. (Maharashtra) for helping us in authentication of the roots.

References
1 Fan Y. G.; Shi Z. Q.; He B. L.; Extraction separation and application for glycyrrhizic and glycyrrhetic acid. Natural Product Research and Development, 1996, 8, 93-99
2 Shibata S. Antitumor promoting and anti-inflammatory activities of licorice principles and their modified compounds. Food Phytochemicals II: Teas, Spices and Herbs, 1994; 308-321
10 Tsai T. H.; Chen C. F. High Performance liquid chromatography determination of 18 α-glycyrrhetinic acid and 18 b-glycyrrhetinic acid in rat plasma: application to pharmacokinetic study. Journal of Chromatography. Biomedical applications 1991, 567, 405-414,
11 Shibata S. A drug over the millennia: pharmacognosy, chemistry and pharmacology of licorice. Yakugaku Zassi, 2000, 120, 849-862
13 F.C. Stormer, R. Reistad and J. Alexander. Food and Chemical Toxicology; 31 (4), 1993, 303-312
15 Mamata Mukhopadhyay and Palash Panja Separation and Purification Technology 63(3) 2008, 539-545