



International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 0974-4304 Vol. 3, No.2, pp 1050-1058, April-June 2011

# Identification of Volatile Constituents from Premna serratifolia L.through GC-MS

C. Ravinder Singh<sup>1</sup>\*, R.Nelson<sup>1</sup>, P. Muthu Krishnan<sup>2</sup> and B.Pargavi<sup>3</sup>

<sup>1\*&3</sup> Department of Biotechnology, Vivekanandha college of Arts and Science for women, Thiruchengode – 637 205, Tamilnadu, India.

<sup>1</sup>Department of Botany, Govt. Arts College, Ariyalur, Tamil nadu, India.

<sup>2</sup>Department of Chemistry, Vivekanandha college of Arts and Science for women, Thiruchengode – 637 205, Tamilnadu, India

\*Corres.author: chinnaravinder@yahoo.co.in, Phone:09597992543

**Abstract :** Medicinal plants are source of important therapeutic aids for alleviating human ailments. Thus natural products have been a major source of drugs for centuries. In tune with this effort, the objective set for the present investigation is to identify the chemical constituents of the leaves and roots of *Premna serratifolia* L. In order to determine the nature of the principle component responsible for its medicinal property. All parts of the plant have medicinal properties. Taking into consideration the medicinal importance of the plant, the volatile organic constituents were analyzed using GC-MS (gas chromatography-mas spectrometry) and the structures were conformed by genesis. A total 29 compounds from both leaves and roots, where the major compounds are 1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, [1ar-(1aà,4aà,7á,7aá,7bà)]- (2.98 %), 2-Furancarboxaldehyde, 5-(hydroxymethyl)- (2.44 %), 2-Hydroxy-3-methylbenzaldehyde (6.39 %), <u>i</u> 2s,6s-2,6,8,8-Tetramethyltricyclo[5.2.2.0(1,6)]undecan-2-ol (6.35 %), Benzofuran, 2,3-dihydro- (29.94 %), Glycerin (1.14 %), n-Hexadecanoic acid (13.94%), 2-Propenoic acid, 3-(4-methoxyphenyl)- (13.84 %) have been identified. **Key words:** *Premna serratifolia* L, Volatile Constituents, GC-MS.

# Introduction

*Premna serratifolia* L. (Verbenaceae) is an important woody, medicinal plant, it is locally known as munnai and has prominent place in Ayurvedha, Siddha, Unani system of medicines <sup>1</sup>. The leaves and roots are astringent, anti-inflammatory, antibacterial properties and are used in cardiac disorder, cough, leprosy, skin disease, constipation, fever, diabetes, obesity, stomach-ache and tumour <sup>2</sup>. And it has cardiotonic <sup>3</sup>, anti- hypoglyceamic properties <sup>4</sup>, anti-coagulant <sup>5</sup>, anti- arthritics <sup>6</sup> and cardio protective effect <sup>7</sup>. The main objective of this study is to identify the chemical constituents from the leaf and root of *Prema srratifolia* L. This might be responsible for the reported biological activity of this plant. In the present

study, Volatile organic matter of the leaves and roots of *Premna serratifolia* L. was analyzed for the first time. This work will help to identify the new compounds, which may helps to produce important therapeutic products.

# Material and Methods

The plant *Premna serratifolia* L. was collected from Keelathaniam, Pudukottai District, Tamil Nadu, India and scientific authenticated in Rhbinath herbarium, Trichy, Tamil Nadu, India.

# **Plant Materials Preparation**

The leaf and root were collected from 8 years old *Premna serratifolia* L. and washed in tap water

and then chopped into small fragments. Then materials were dried under shade conditions for 30 days and the drying operation was carried out under controlled conditions to avoid chemical changes. The dried samples were powdered roughly with hands. The powdered samples were stored in polythene containers at room temperature.

#### **Extraction of Samples**

The organic constituents from dried plant tissue (leaf and root) prepared by continuous extracting the powdered materials in Soxhlet apparatus with ethanol as solvent. The extracts were concentrated to one third of their original volume and used for testing the chemical constituents. After completion of extraction, the extract was filtered and concentrated to dryness under hot air oven at  $55^{\circ}$  C. The residue appeared as a dark brown powder.

#### **GC-MS Programme:**

Column: Elite-1

(100% Dimethyl poly siloxane), 30m x 0.25mmID x  $1 \mu m df$ 

Equipment: GC Clarus 500 Perkin Elmer

Carrier gas: Helium 1ml/min

Detector: Mass detector- Turbo mass gold- Perkin Elmer, Software- Turbomass 5.1.

Sample injected: 1µl Split: 10:1

#### **Oven Temperature programme:**

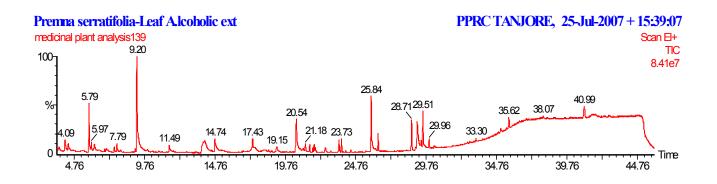
110deg-2min hold Up to 280 deg at the rate of 5 deg/ min-9 hold Injector temperature: 250 deg c Total GC time: 45 min

### **MS Programme**

Library used: NIST Ver.2.1 In let Line temperature: 200 deg c Source temperature: 200deg c Mass scan: (m/z) 45- 450 MS Time: 46 min

#### **Phytochemical studies**

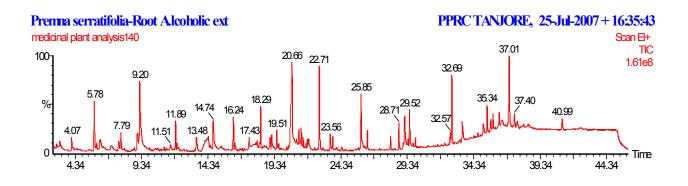
The preliminary phytochemical screening test has been attempted in difference parts of *P. serratifolia* to find out the presence or absence of certain bioactive compounds Table-1. All the extracts were used to test for the presence of alkaloids, sugar, reducing sugar, catachins, anthroquilnones, amino acids, flavonoids, steroids, terpenoids, tannins, phenolics and saponins. The methods of preliminary phytochemical analysis were based on the methods of Brindha *et al.*.<sup>8</sup>

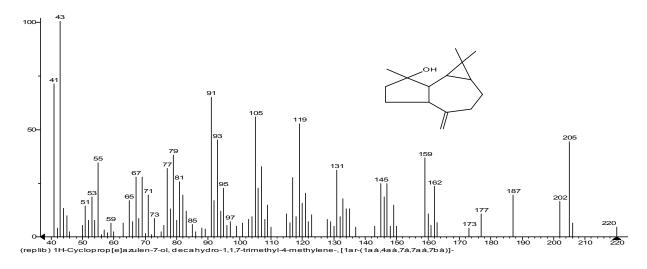

# 1. Prelimary Phytochemical Test (Brindha et al., 1981).

| Sl.No | Test                                                | Observation                | Inference              |
|-------|-----------------------------------------------------|----------------------------|------------------------|
| 1.    | Test solution + minimum quantity of                 | Purple colour changes to   | Presence of steroids   |
|       | chloroform, 3-4 drops of acetic anhydride and       | blue or green              |                        |
|       | one drop of conc. $H_2SO_4$                         |                            |                        |
| 2.    | Test solution + piece of tin +3 drops of thionyl    | Violet or purple colour    | Presence of            |
|       | chloride                                            | developed                  | triterpenoids          |
| 3.    | Test solution + 2ml of Fehlings reagent + 3ml       | Red – orange colour formed | Presence of reducing   |
|       | of H <sub>2</sub> O                                 |                            | sugars                 |
| 4.    | Test solution + very small quantity of anthrone     | Green to purple colour     | Presence of sugar      |
|       | + few drops of conc. $H2SO_4$ and heat              | developed                  |                        |
| 5.    | Test solution taken with 2 NHCL. The aqueous        | White precipitate or       | Presence of alkaloids  |
|       | layer formed was decanted and to this one or        | turbidity formed           |                        |
|       | few drops of Mayers reagent was added               |                            |                        |
| 6.    | Test solution in alcohol + one drop of natural      | Intense colour developed   | Presecne of phenolic   |
|       | ferric chloride (5%) solution                       |                            | compounds              |
| 7.    | Test solution in alcohol + Ehrilich reaget and      | Pink colour formed         | Presence of catachins  |
|       | few drops of conc. HCl                              |                            |                        |
| 8     | Test solution in alcohol + a bit of magnesium       | Red or orange red colour   | Presence of flavanoids |
|       | and one or two drops of conc. HCl and heat          | formed                     |                        |
| 9.    | Test solution $+$ H <sub>2</sub> O and shake        | Foamy lather formed        | Presence of saponins   |
| 10    | Test solution $+$ H <sub>2</sub> O $+$ lead acetate | White precipitate formed   | Presence of Tannins    |
| 11.   | Test solution + magnesium acetate solution          | Pink colour formed         | Presence of            |
|       |                                                     |                            | anthroquiones          |
| 12.   | Test solution + 1 % ninhydrin in alcohol            | Blue or violet colour      | Presence of amino      |
|       |                                                     | developed                  | acids                  |

| Sl. | RT    | Name of the compound                    | Formula                                        | MW  | Peak  |
|-----|-------|-----------------------------------------|------------------------------------------------|-----|-------|
| No  |       |                                         |                                                |     | area  |
|     |       |                                         |                                                |     | %     |
| 1   | 4.09  | <u>:</u> Glycerin                       | C3H8O3                                         | 92  | 2.79  |
| 2   | 5.80  | 2,5-Furandione, 3-methyl-               | C5H4O3                                         | 112 | 9.27  |
| 3   | 9.20  | Benzofuran, 2,3-dihydro-                | C8H8O                                          | 120 | 29.94 |
| 4   | 14.74 | 2-Hydroxy-3-methylbenzaldehyde          | C8H8O2                                         | 136 | 6.39  |
| 5   | 17.43 | Dodecanoic acid                         | C12H24O2                                       | 200 | 7.88  |
| 6   | 20.54 | 2-Propenoic acid, 3-(4-methoxyphenyl)-  | C10H10O3                                       | 178 | 13.84 |
| 7   | 21.18 | Phenol, 4-(3-hydroxy-1-propenyl)-2-     | C10H12O3                                       | 180 |       |
|     |       | methoxy-                                |                                                |     | 1.54  |
| 8   | 21.49 | 2-Propenoic acid, 3-(4-methoxyphenyl)-, | C <sub>12</sub> H <sub>14</sub> O <sub>3</sub> | 206 |       |
|     |       | ethyl ester                             |                                                |     | 1.35  |
| 9   | 23.73 | 1,2-Benzenedicarboxylic acid, bis(2-    | C <sub>16</sub> H <sub>22</sub> O <sub>4</sub> | 278 |       |
|     |       | methylpropyl) ester                     |                                                |     | 2.50  |
| 10  | 25.84 | n-Hexadecanoic acid                     | C <sub>16</sub> H <sub>32</sub> O <sub>2</sub> | 256 | 13.94 |
| 11  | 28.71 | Phytol                                  | C <sub>20</sub> H <sub>40</sub> O              | 296 | 6.78  |
| 12  | 29.96 | Octadecanoic acid, ethyl ester          | C20H40O2                                       | 312 | 1.68  |
| 13  | 35.62 | Octasiloxane,                           | C16H50O7Si8                                    | 578 |       |
|     |       | 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-  |                                                |     |       |
|     |       | hexadecamethyl-                         |                                                |     | 2.11  |

Table-2 Phytochemicals identified in the alcoholic extract of the leaf Premna serratifolia


# Fig-1 Phytochemicals identified in the alcoholic extract of the leaf Premna serratifolia

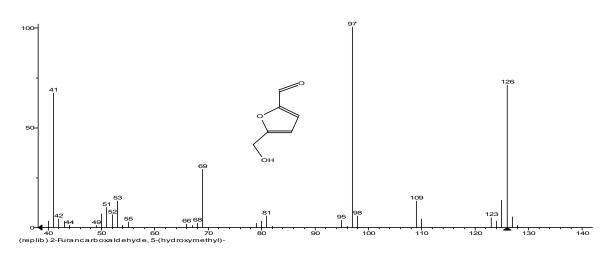



| Sl. | RT    | Name of the compound                              | Molecular                                      | MW           | Peak  |
|-----|-------|---------------------------------------------------|------------------------------------------------|--------------|-------|
| No  |       |                                                   | Formula                                        |              | Area% |
| 1   | 4.08  | : Glycerin                                        | C3H8O3                                         | 92           | 1.14  |
| 2   | 5.79  | 2,5-Furandione, 3-methyl-                         | C5H4O3                                         | 112          | 2.89  |
| 3   | 9.06  | 2-Furancarboxaldehyde, 5-(hydroxymethyl)-         | С6Н6О3                                         | 126          | 2.44  |
| 4   | 9.20  | Benzofuran, 2,3-dihydro-                          | C8H8O                                          | 120          | 9.86  |
| 5   | 14.74 | 2-Hydroxy-3-methylbenzaldehyde                    | C8H8O2                                         | 136          | 34.58 |
| 6   | 16.24 | Seychellene                                       | C <sub>15</sub> H <sub>24</sub>                | 204          | 2.30  |
| 7   | 17.43 | Dodecanoic acid                                   | C12H24O2                                       | 200          | 0.71  |
| 8   | 18.30 | 1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-      | C15H24O                                        | <u>:</u> 220 |       |
|     |       | trimethyl-4-methylene-, [lar-                     |                                                |              |       |
|     |       | (1aà,4aà,7á,7aá,7bà)]-                            |                                                |              | 2.98  |
| 9   | 20.65 | 2-Propenoic acid, 3-(4-methoxyphenyl)-            | C10H10O3                                       | 178          | 13.99 |
| 10  | 22.71 | 2s,6s-2,6,8,8-                                    | C15H26O                                        | 222          |       |
|     |       | Tetramethyltricyclo[5.2.2.0(1,6)]undecan-2-ol     |                                                |              | 6.35  |
| 11  | 23.56 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol            | C <sub>20</sub> H <sub>40</sub> O              | 296          | 1.34  |
| 12  | 25.85 | n-Hexadecanoic acid                               | C <sub>16</sub> H <sub>32</sub> O <sub>2</sub> | 256          | 4.87  |
| 13  | 28.71 | Phytol                                            | С20Н40О                                        | 296          | 1.90  |
| 14  | 29.96 | Octadecanoic acid, ethyl ester                    | C20H40O2                                       | 312          | 0.59  |
| 15  | 32.69 | 2-Phenanthrenol, 4b,5,6,7,8,8a,9,10-octahydro-    | С20Н30О                                        | 286          | 4.77  |
|     |       | 4b,8,8-trimethyl-1-(1-methylethyl)-, (4bS-trans)- |                                                |              |       |
| 16  | 37.01 | unknown                                           | ***                                            | ***          | 9.29  |

Table-3 Phytochemicals identified in the alcoholic extract of the root Premna serratifolia

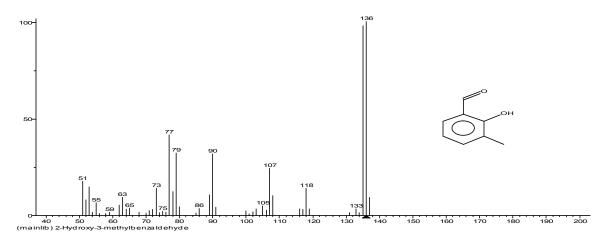
# Fig-2 Phytochemicals identified in the alcoholic extract of the root Premna serratifolia





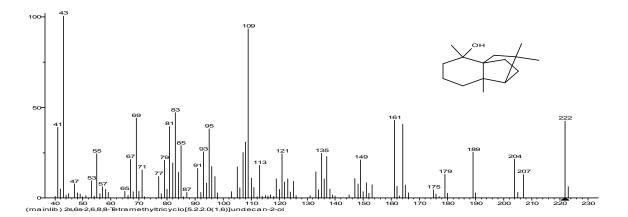

#### Fig-3

<u>Name:</u> 1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, [1ar-(1aà,4aà,7á,7aá,7bà)]-<u>Formula:</u> C15H24O <u>MW:</u> 220 <u>CAS#:</u> 6750-60-3 <u>NIST#:</u> 107043 <u>ID#:</u> 1780 <u>DB:</u> replib <u>Other DBs:</u> None <u>Contributor:</u> N.W. Davies, Centr. Sci. Lab., Univ. Tasmania, Hobart, Australia <u>10 largest peaks:</u>


 43 999
 41 709
 91 647
 105 555
 119 524

 93 449
 205 440
 79 379
 159 365
 55 343

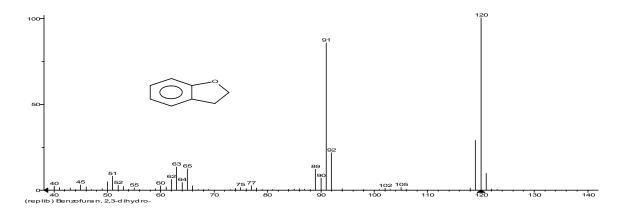



#### Fig-4

<u>Name:</u> 2-Furancarboxaldehyde, 5-(hydroxymethyl)-<u>Formula:</u> C<sub>6</sub>H<sub>6</sub>O<sub>3</sub> <u>MW:</u> 126 <u>CAS#:</u> 67-47-0 <u>NIST#:</u> 60544 <u>ID#:</u> 12832 <u>DB:</u> replib <u>Other DBs:</u> None <u>Contributor:</u> D.HENNEBERG, MAX-PLANCK INSTITUTE, MULHEIM, WEST GERMANY <u>10 largest peaks:</u> 97 999 | 126 710 | 41 668 | 39 336 | 69 289 | 29 173 | 125 136 | 109 131 | 53 131 | 51 100 |

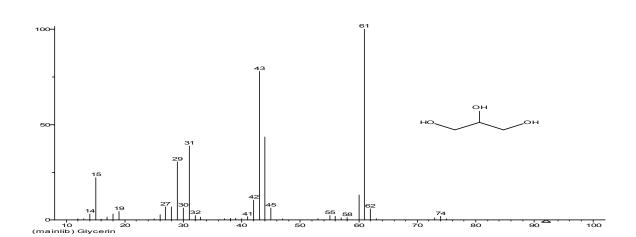


#### Fig-5


<u>Name:</u> 2-Hydroxy-3-methylbenzaldehyde <u>Formula:</u> C<sub>8</sub>H<sub>8</sub>O<sub>2</sub> <u>MW:</u> 136 <u>CAS#:</u> 824-42-0 <u>NIST#:</u> 72528 <u>ID#:</u> 80172 <u>DB:</u> mainlib <u>Other DBs:</u> None <u>Contributor:</u> R.SELF, AGRIC. RES. COUNC., FOOD RES. INST., NORWICH, U. <u>10 largest peaks:</u> <u>136 999 | 135 977 | 77 414 | 79 321 | 90 316 |</u> <u>107 242 | 51 175 | 53 147 | 73 140 | 118 139 |</u>



# <u>Fig-6</u>


Name: 2s,6s-2,6,8,8-Tetramethyltricyclo[5.2.2.0(1,6)]undecan-2-ol Formula: C15H26O <u>MW:</u> 222 <u>CAS#:</u> N/A <u>NIST#:</u> 140230 <u>ID#:</u> 9434 <u>DB:</u> mainlib <u>Other DBs:</u> None <u>Contributor:</u> B. Derendyaev, Novosibirsk Institute of Organic Chemistry <u>10 largest peaks:</u> <u>12 0001</u> <u>100 0201</u> <u>02 4(0)</u> <u>(0 4201</u>)

| 43 999  | 109 928 | 83 469 | 69 438 | 161 425 |
|---------|---------|--------|--------|---------|
| 222 421 | 164 404 | 81 392 | 41 386 | 95 379  |



<u>Fig-7</u>

Name: Benzofuran, 2,3-dihydro-Formula: C8H8O <u>MW:</u> 120 <u>CAS#:</u> 496-16-2 <u>NIST#:</u> 109771 <u>ID#:</u> 16183 <u>DB:</u> replib <u>Other DBs:</u> None <u>Contributor:</u> Philip Morris R&D <u>10 largest peaks:</u> <u>120 999 | 91 855 | 119 288 | 92 216 | 39 159 |</u> <u>63 134 | 65 122 | 89 121 | 12196 | 5180 |</u>



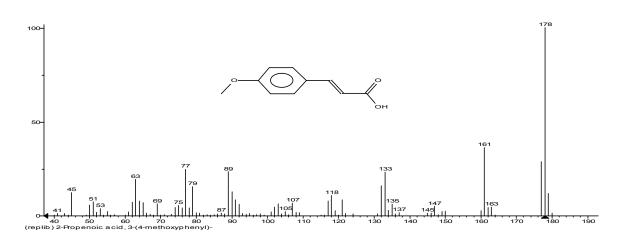
#### <u>Fig-8</u>

<u>Name:</u> Glycerin <u>Formula:</u> C3H8O3 <u>MW:</u> 92 <u>CAS#:</u> 56-81-5 <u>NIST#:</u> 229308 <u>ID#:</u> 6829 <u>DB:</u> replib <u>Other DBs:</u> None <u>Contributor:</u> Japan AIST/NIMC Database- Spectrum MS-NW-5532 <u>10 largest peaks:</u> <u>61 999 | 43 740 | 44 462 | 31 289 | 15 273 |</u>

29 151 | 60 90 | 18 68 | 27 61 | 28 58 |



#### <u>Fig-9</u>


<u>Name:</u> n-Hexadecanoic acid <u>Formula:</u> C16H32O2

<u>MW:</u> 256 <u>CAS#:</u> 57-10-3 <u>NIST#:</u> 251929 <u>ID#:</u> 1725 <u>DB:</u> replib

Other DBs: None

<u>Contributor</u>: Div. of Experiment Therapeutics WRAIR, WRAMC, Washington DC 20307 <u>10 largest peaks</u>:

| 43 999 | 41 753 | 60 580 | 55 526 | 73 523 |
|--------|--------|--------|--------|--------|
| 57 476 | 69 236 | 71 193 | 45 132 | 42 119 |



#### **Fig-10**

Name: 2-Propenoic acid, 3-(4-methoxyphenyl)-Formula: C10H10O3 MW: 178 CAS#: 830-09-1 NIST#: 75919 ID#: 22426 DB: replib Other DBs: None Contributor: RADIAN CORP 10 largest peaks: 178 999 | 161 361 | 177 286 | 77 246 89 233 | 133 232 63 194 | 132 159 | 79 154 90 127 |

#### **Result and Discussion**

Volatile organic compounds are products of plant secondary metabolites, consisting of complex mixture of mono-, di-, tri- terpene hydrocarbons and oxygenated biological materials. In the present investigation, 13 compounds (Fig-1) from leaves and 16 compounds (Fig-2) from root of Premna serratifolia L. were identified through GC-MS analysis (Table-2,3). Among the total compounds, 8 major compounds A total 29 compounds from both leaves and roots, where the major compounds are 1H-Cycloprop[e]azulen-7-ol, decahydro-1,1,7-trimethyl-4methylene-, [1ar-(1aà,4aà,7á,7aá,7bà)]- (2.98 %) Fig-3, 2-Furancarboxaldehyde, 5-(hydroxymethyl)- (2.44 %) Fig-4, 2-Hydroxy-3-methylbenzaldehyde (6.39 %) Fig-5, : 2s,6s-2,6,8,8-Tetramethyltricyclo [5.2.2.0 (1,6)]undecan-2-ol (6.35 %) Fig-6, Benzofuran, 2,3dihydro- (29.94 %) Fig-7, Glycerin (1.14 %) Fig-8, n-Hexadecanoic acid (13.94%) Fig-9, 2-Propenoic acid,

# **References**

- 1. Ajitkar, B.K., Choudry. and Bandyopadhyay, N.G., Comparative evaluation of hypoglyceamic activity of some Indian medicinal plants in Alloxan diabetic rats, Journal of ethanopharmacology, 2003, 84,105-108.
- 2. Prajapati, N.D, Purohit, S.S., Sharma, A.K. and Kumar, T., hand book of medicinal plants: A complete source book. Agrobios, 2006, (India).
- Rekha, R., Susela, I., Meenakshi sundaram, R. and Saleem Basha, N., Cardiostimulant activity of bark and wood of *Premna serratifolia* L.,Bangladesh Journal of Pharmacological society, 2008, 3, 107-113.
- 4. Dash, G.K., Patrol, C.P. and Maiti, A.K., A study on the anti-hypoglyceamic effect of roots of *Premna corymbosa* Rotl., Journal of Natural Remedies, 2005, 5(1),31-34.
- Gopal, R.H. and Purushothaman, K.K., Effect of plant isolates on coagulation of blood: An *invitro* study, Bull Med. Ethanobot..Res, 1984, 5, 171-177.
- 6. Rathore, R.S., Prakash, A. and Singh, P.P., *Premna integrifolia* L. Apreliminary study of anti-inflammatory and anti-arthritic activity, Rheurnatism, 1977, 12,130-134.

3-(4-methoxyphenyl)- (13.84 %) Fig-10 have been identified. from both leaves and roots have been identified with comparisons of mass spectrum (Fig-3). The similar findings (Volatile organic compounds) reported from Mimusops elengi <sup>9</sup>, *Acorus calamus*, <sup>10</sup>, *Morinda morindoides* <sup>11</sup>. Our study suggests that *Premna serratifolia* L. may be a potential source of the reported important disease use in medicine.

#### Acknowledgement

Author acknowledgement the valuable help rendered by Dr Jhon Britto, Director, Rhabinath herbarium, Thiruchirapalli, Tamil nadu, India for identification of plant specimen. And Mr S.Kumaravel Food analysis Laboratory, Paddv Scientist, Processing Research Centre (Ministry of Food Government Processing Industries, of India), Thanjavur-613 005.

- Rekha, R. and Saleem Basha, N., Cordio prective effect of ethanol extracts of stem-bark and stem wood of *Premna serratifolia* (Verbenaceae), Research Journal of Pharmacy and Technology, 2008, 1(4), 487-491.
- Brindha, P., Sasikala, K. and Purushoth, K., Preliminary Phytochemical studies in higher plants. Ethnobotany, 1977, 3, 84-96.
- 9. Anjali, R., Rasika, T., Amruta, T., Vedavati, P. and Nirmala, D., GC-MS study of a stem volatile matter from *Mimusops elengi*, International journal of chem.Tech. research, 2009, 1(2), 158-161.
- Rajendra, G. and Kyoung-su Kim., Volatile organic compounds of medicinal values from Napalese Acorus calamus L., Kathmandu University journal of science engineering and Technology,2009, 5, 51-65.
- Bi Kouame, F.P., Bedi, G., Koffi, A.M., Chalchat, J.C. and Guessan, T.Y., Volatiles constituents from leaves of *Morinda morindoides* (Rubiaceae): A medicinal plant from the Ivory Coast, The open Natural Products Journal, 2010, 3,6-9.