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Abstract: Peroxisome proliferator-activated receptor gamma (PPAR) has been the focus of intense
research, as ligands for this receptor have emerged as potent insulin sensitizers used in the treatment of type
2 diabetes mellitus (T2DM). A series of benzoyl 2-methyl indoles was subjected to quantitative structure-
activity relationship (QSAR) analysis. The studies showed that the electronic properties, energy of lowest
unoccupied molecular orbital (ELUMO) and dipole moment (DPL), and principal moment of inertia-Z
component (PMI-Z) of the molecule can be explored to design potent PPAR modulators. LUMO, which is
indicative of π-bonding interaction of species crucial for the electrophilicity of the molecules, suggested that
molecules are able to interact with electron-rich area at the receptor site. DPL is related to the molecular
charge distribution in Z-component and can be altered through the incorporation of electronegative group.
The QSAR study provides important structural insights in designing of potent PPAR modulators.
Keywords: peroxisome proliferator-activated receptor (PPAR), type 2 diabetes mellitus (T2DM),
quantitative structure activity relationship analysis (QSAR), indoles, selective PPAR modulators.

Introduction

The peroxisome proliferator-activated receptor
gamma (PPAR) has been the focus of intense
research during the past decade because ligands
for this receptor have emerged as potent insulin
sensitizers used in the treatment of type 2 diabetes
mellitus (T2DM). Increased levels of circulating
free fatty acids and lipid accumulation in non-
adipose tissue have been implicated in the
development of insulin resistance. This situation is
improved by PPAR ligands, which improve the
insulin sensitivity.1 Between 1997 and 1999, a new
class of drugs called ‘glitazones’2 was approved by
the FDA for the treatment of type 2 diabetes.
These agents are PPAR modulators, share a
common partial chemical structure: thiazolidine-
2,4-diones (TZD).

Glitazones correct hyperglycemia by
enhancing tissues’ sensitivity to insulin. Because

of this mechanism of action, glitazone treatment is
not associated with dangerous hypoglycemic
incidents that have been observed with
conventional sulfonylurea agents and insulin
therapy. Glitazones, while efficacious, exhibit
significant liabilities; they are associated with
edema and weight gain in man. In addition, cardiac
hypertrophy is observed in preclinical rodent
models. These adverse effects preclude glitazones
from being used as frontline therapy in T2DM,
suggesting that pursuit of a safer second-
generation human PPAR (hPPAR) agonist is
desirable.

Selective PPAR modulators (SPPAR
Ms), which are also known as hPPAR partial
agonists, have recently attracted much interest.
Selective modulation of the hPPAR could provide
significant anti-diabetic activity while concurrently
reducing or eliminating PPAR-mediated side-
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effects.3-5 We therefore initiated a search for non-
TZD PPAR ligands with the goal of finding novel
insulin sensitizers. Owing to continuing zeal in
exploring the structural insights to aid the design
of safer novel insulin sensitizers6-10, our research
has been tuned to cater the needs of changing
scenario of anti-diabetic therapy. In this context
QSAR analysis of Benzoyl 2-methyl indoles11 as
selective PPAR modulators was performed to
identify the associated molecular properties, which
are responsible for drug-receptor interactions.

Materials and Methods

The in vitro activity data of PPAR by
benzoyl indoles (Table 1) were taken from the
reported work11. The biological activity data (IC50

in M) was converted into negative logarithmic
dose (pIC50) for QSAR analysis to reduce
skewness of data set.

The series was subjected to molecular
modeling and QSAR studies using CS Chem-
Office Software version 6.012 running on a P-III
processor. Energy minimization was carried out
using molecular mechanics (MM2) until the root
mean square (RMS) gradient value became smaller
than 0.1 kcal/mol Å. Minimized molecule was
subjected to re-optimization via the Hamiltonians
approximations using Austin model-1 (AM1)
method until the RMS gradient became smaller
than 0.0001 kcal/mol Å13. The geometry
optimization of the lowest energy structure was
carried by Chem3D ultra version 6.0 using
Eigenvector following (EF) routine. The descriptor
values for all the molecules were calculated using
“compute properties module” of program.

All the descriptor values for the molecules
considered as independent variables and PPAR
binding data (pIC50) were taken as dependent
variable. Sequential multiple linear regression
analysis method was used to develop tri-variant
relationship between pIC50 and descriptors.

Calculated thermodynamic descriptors
included critical temperature (Tc), ideal gas
thermal capacity (Cp), critical pressure (Pc), boiling
point (BP), Henry’s law constant (H), stretch bend
energy (ESB), bend energy (EB) and log P.

Steric descriptors derived were Connolly
accessible area (SAS), Connolly molecular area
(CMA), Connolly solvent excluded volume
(CSEV), exact mass (EM), molecular weight
(MW), principal moment of inertia-X component
(PMI-X), principal moment of inertia-Y
component (PMI-Y) and principal moment of
inertia-Z component (PMI-Z), molar refractivity
(MR) and ovality (OVAL).

Electronic descriptors, such as electronic
energy (EElc), highest occupied molecular orbital

energy (EHOMO), lowest unoccupied molecular
orbital energy (ELUMO), X-component of dipole
moment (DPLX), Y-component of dipole moment
(DPLY), Z-component of dipole moment (DPLZ),
resultant dipole moment (DPL), repulsion energy
(ENR), VDW-1,4- energy (E14), Non-1, 4-VDW
energy (EV) and total energy (E) were calculated.

Sequential multiple linear regression
analysis method was used to perform QSAR
analysis employing in-house program
VALSTAT14. In sequential multiple regression, the
program searches for all permutations and
combinations sequentially for the data set. Here, it
searched for 7,770 combinations and gave multi-
variant equations, based on squared correlation
coefficient. The ± data within the parentheses are
the standard error, associated with coefficient of
the descriptors in regression equations. The best
model was selected on the basis of various
statistical parameters such as correlation
coefficient (r), standard error of estimation (SE),
sequential Fischer test (F), bootstrapping squared
correlation coefficient (rbs

2), bootstrapping
standard deviation (Sbs) cross-validated squared
correlation coefficient (q2) and randomization test
(chance).

Results and Discussion

All the descriptor values for the
molecules were considered as independent
variables and pIC50 was taken as dependent
variable. Sequential multiple linear regression
analysis method was used to develop tri-variant
relationship between pIC50 and descriptors. When
data set was subjected to sequential multiple linear
regression analysis, in order to develop QSAR
model, various statistically significant equations
with coefficient of correlation (r  0.92) were
obtained (Table 2 and 3). Equation 1 was
considered as model (Table 4 and Fig. 1).

pIC50 = 0.164 + 6.746e-005*PMI-Z +
               0.434*DPL + 3.709*ELUMO

n = 17, r = 0.937, r2 = 0.878, SE = 0.480, F =
31.145, q2 = 0.802

The model having good correlation
coefficient value explains 87.8% variance in the
activity. The standard error of estimation (SE =
0.480) and a higher F value rendering the model
statistically significant. The data showed overall
better statistical significance >99.9% with F(3,13) =
31.145 against the tabulated value for sequential
Fischer test at 99.9% significant (F(3,13α 0.001)=
11.9). The inter-correlations of the descriptor in
the model were low, indicating that all the
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descriptors were contributing independently to the
biological activity. The contribution of descriptors
to model is in the ratio PMI-Z: DPL: ELUMO: 3.822:
1: 1.479 in normalized data.
The model was subjected to leave-one-out cross-
validation method, The value of cross-validated
squared correlation co-efficient (q2= 0.802),
predictive residual sum of square (SPRESS= 0.612)
and standard error of predictivity (SDEP= 0.535)
suggested good predictive ability of the biological
activity. The bootstrapping squared correlation
coefficient (r2

bs=0.886) suggested the robustness of
the model and contribution of molecular descriptor
values of each molecule to the correlation was
nearly same. Randomized biological activity data
test (chance <0.001) revealed that the result was
not based on chance correlation. The QSAR Study
revealed that ELUMO, PMI-Z and Dipole were the
principle descriptors contributed positively for the

PPAR modulator activity. ELUMO, indicative of π-
bonding interaction, is crucial for the
electrophilicity of the molecules, suggested that
molecules are able to interact with electron-rich
area at the receptor site. Dipole, related to the
molecular charge distribution, can be altered
through the incorporation of electronegative group.
PMI-Z, Principle Moments of Inertia-Z
component, suggests the orientation of the
aromatic ring bearing bulkier substitution along Z-
axis for better activity.

The QSAR Study revealed that
electronegative substitution, which enhances
electrophilicity of the molecule, with orientation of
the aromatic ring bearing bulkier substitution
along Z-axis, could be helpful in designing the
Selective PPAR modulators for the management
of type 2 diabetes mellitus.

Table 1—Structure and in-vitro activity of benzyl Indoles

N
O

R1

R2

R3

Comp
d.

R1 R2 R3 IC50 (M)a pIC50

1 Cl OCH3 2-COOH 6.28 5.202
2 Cl OCH3 3-COOH 0.208 6.682
3 Cl OCH3 4-COOH 4.69 5.329
4 Cl OCH3 2-OCH2COOH 0.333 6.478
5 Cl OCH3 3-OCH2COOH 0.099 7.004
6 Cl OCH3 2-OCH(Me)COOH 0.084 7.076
7 Cl OCH3 3-OCH(Me)COOH 0.049 7.310
8 Cl OCH3 4-OCH(Me)COOH 2.14 5.670
9 Cl OCH3 2-OC(Me)2COOH 0.079 7.102
10 Cl OCH3 3-OC(Me)2COOH 0.045 7.347
11 Cl OCH3 4-OC(Me)2COOH 0.914 6.039
12 OCH3 OCF3 2-OCH(Me)COOH 0.023 7.638
13 OCH3 OCF3 2-OCH(Me)COOH 0.002 8.699
14 OCH3 OCF3 2-OC(Me)2COOH 0.001 9
15 OCH3 OCF3 3-OCH(Me)COOH 0.001 9
16 OCH3 OCF3 3-OCH(Me)COOH 0.003 8.523
17 OCH3 OCF3 3-OC(Me)2COOH 0.003 8.523

a Average of two experiments. Data presented as mean  SEM
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Table 2—QSAR statistics of significant equations
Eqn.
no.

Regression Equations r2 SE F
ICWP
(Up to)

r2
bs Sbs Chance Outlier q2 SPRESS SDEP

1
pIC50=0.164+6.746e-005*PMI-Z

+0.434*DPL +3.709*ELUMO
0.878 0.480 31.145 0.485 0.894 0.067 <0.001 Nil 0.801 0.612 0.635

2
pIC50=44.331-0.088*BP+0.062*CAA

-7.643e-005*PMI-X
0.877 0.483 30.639 0.845 0.906 0.044 <0.001 Nil 0.781 0.643 0.562

3
pIC50=1.969-0.002*HF+5.899e-005*

PMI-Y-0.329*SE
0.863 0.509 27.206 0.828 0.892 0.066 <0.001 Nil 0.753 0.683 0.597

4
pIC50=3.474+3.985e-005*PMI-Y

+1.175*ELUMO +0.114*DDE
0.861 0.512 26.773 0.786 0.902 0.061 <0.001 Nil 0.749 0.688 0.602

5
pIC50=58.029-0.066*CT+0.039*

CMA  +6.583e-005*PMI-Y
0.859 0.515 26.472 0.878 0.894 0.065 <0.001 Nil 0.734 0.708 0.619

Table 3—Inter-correlation matrix of parameters used in QSAR model
PMI-Z DPL ELUMO

PMI-Z 1
DPL 0.225 1

ELUMO 0.156 0.486 1
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Table 4—Observed (Obs.), calculated (Cal.) and leave-one-out predicted
(Pred.) pIC50 data of

pIC50 Residual
Compd.

Obs Cal. Pred.
Z-Score

1 5.202 5.764 6.075 -1.299 0.562 0.873
2 6.682 6.219 6.067 1.071 -0.463 -0.615
3 5.329 5.201 5.139 0.295 -0.128 -0.19
4 6.478 6.795 6.850 -0.733 0.317 0.372
5 7.004 6.523 6.404 1.114 -0.481 -0.6
6 7.076 6.540 6.411 1.239 -0.536 -0.665
7 7.310 7.479 7.527 -0.391 0.169 0.217
8 5.670 5.807 5.911 -0.319 0.137 0.241
9 7.102 7.100 7.100 0.005 -0.002 -0.002
10 7.347 7.100 7.015 0.570 -0.247 -0.332
11 6.039 6.796 7.004 -1.750 0.757 0.965
12 7.638 8.307 8.402 -1.546 0.669 0.764
13 8.699 8.456 8.415 0.563 -0.243 -0.284
14 9 8.780 8.731 0.508 -0.22 -0.269
15 9 8.328 8.207 1.555 -0.672 -0.793
16 8.523 8.533 8.537 -0.022 0.01 0.014
17 8.523 8.895 9.005 -0.860 0.372 0.482

Fig. 1—Scatter plot of observed versus calculated (Cal.) and leave-one-out
predicted (Pred.) pIC50 activity derived from the model
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