
International Journal of ChemTech Research
CODEN( USA): IJCRGG      ISSN : 0974-4290
Vol.5, No.2, pp 925-934,    April-June 2013

ICGSEE-2013[14th – 16th March 2013]
International Conference on Global Scenario in Environment and Energy

Numerical Studies On The Performance Of Methanol
Based Air To Air Heat Pipe Heat Exchanger

 S. Ravitej Raju*, M. Balasubramani, B. Nitin Krishnan,
K. Kesavan, M. Suresh.

Department of Mechanical Engineering, SSN College of Engineering,
Kalavakkam, India.

*Corres.author: ravitejreds@gmail.com

Abstract: Heat transfer has an important role in many engineering applications. Recently heat pipe heat
exchangers have been extensively used in industries for the application of waste heat recovery from exhaust
gasses. This paper presents numerical simulation of an air to air Gravity Assisted Heat Pipe Heat Exchanger
(GAHPHE) which uses methanol as a working fluid based on effectiveness – number of transfer units method.
Ambient air temperature of 30ºC has been considered at condenser inlet. The effects of mass flow rate (ṁ) and
hot air temperature at evaporator inlet (TH,in) on heat transfer (Q), overall heat transfer coefficient (U), overall
effectiveness (ε) and temperature range (TH,in – TH,out) for copper pipe diameters of 8 mm and 16 mm have been
studied.
Keywords: heat pipe; thermosyphon heat exchanger; -NTU method; methanol.

Introduction

Heat pipes are heat transfer devices which use the principles of thermal conduction and latent heat of
vaporisation to transfer heat effectively at very fast rates. There are two types of heat pipes depending on how
the condensed working fluid is returned to the evaporator section, namely gravity assisted heat pipes and heat
pipes with wicks. In gravity assisted heat pipes the condensed fluid is returned due to gravitational forces
whereas in heat pipes with wicks the condensed fluid is returned due to the capillary action through wicks. The
use of heat pipes in heat exchangers results in many advantages such as compactness, low weight, high heat
recovery effectiveness, no moving parts, pressure tightness, complete separation of hot and cold fluids and high
reliability1. These advantages led to usage of heat pipe heat exchangers in various industries as waste heat
recovery systems2 waste heat from the exhaust gasses released from the industrial plants. An important
application is the recovery of waste heat from the industrial exhaust gasses3 which not only saves energy but
also protects the environment.

Azad and Gibbs presented a theoretical study of an air to water heat pipe heat exchanger4 in which the
variation of effectiveness and with ratio of cold to hot flow-stream capacity rate for 8, 10 and 12 rows was
analysed. An experimental study of the performance of air to air heat pipe heat exchanger utilizing R-22 as the
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working fluid was carried out by Wadowski et al.5 to investigate its behaviour under different operating
conditions. An experimental and theoretical research was carried out by Noie to investigate the thermal
performance of an air to air thermosyphon heat exchanger in which distilled water was used as the working
fluid6. The overall effectiveness of the heat exchanger varied between 37% and 65%.

In the present study, a simulation program has been developed to predict the performance of an air to air
gravity assisted heat pipe heat exchanger with eight heat pipes in a staggered arrangement as shown in Fig. 1.
The working fluid considered is methanol and copper pipes are used. The total length of each heat pipe is taken
as 450 mm. The length of the condenser section and evaporator section is each 200 mm and the length of the
insulated section is taken as 50mm. The length and the breadth of the heat exchanger were considered to be
138mm each. The eight heat pipes were arranged in three rows with a surface to surface distance between rows
being 30 mm. As heat is being transferred between hot air and cold air, both the evaporator and condenser
section are assumed to have finned surfaces. Both the sections are assumed to have eighty aluminium fins each.

Fig. 1 Front and top view of GAHPHE

Mathematical Model

In the present study for the analysis of an air to air Gravity Assisted Heat Pipe Heat Exchanger (GAHPHE) the
method of effectiveness of transfer units has been used7. The GAHPHE considered for this study consists of
methanol heat pipes in staggered arrangement with continuous aluminium finned circular tubing are used. By
neglecting heat conduction in the axial direction of heat pipes the equations given below were used for the
simulation.

Evaporator side
The resistances for the outer, pipe and inner section of the evaporator side are given by Eq.1, Eq.2 and

Eq.3 respectively.
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The overall heat transfer coefficient of the evaporator side based on the outer area is given by Eq.4.

The correlations for continuous fin with circular tubing [8] are given by Eq.5 and Eq.6.

The Stanton number is given by-

By solving Eq.5, Eq.6 and Eq.7 for ho we can find the value of heat transfer coefficient of the outer section of
the evaporator side.

The Air side surface efficiency is given by Eq. 8

The fin efficiency ηfin of a non-circular fin is given by Eq.9, where Re is the effective radius of the fin

The standard extended surface parameter, mes is given by Eq. 10 by assuming that the thickness of the
fin is much less than the length of the fin.

The effective fin radius Re is calculated using the correlations given in Eq. 11 to Eq.15

Where r is the outer radius of the tube and,

In this analysis
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The fin efficiency parameter is found by using the effective radius in Eq.16

A modified version of Rohsenow equation is used to determine the boiling heat transfer coefficient i.e.
the heat transfer coefficient (hi) inside the pipe in the evaporator section.

Where,

For methanol as working fluid C1= 24.09, C2= 0.2 and C3= 0.4. By using Eq. 17 to Eq.19 and
substituting appropriate values the value of hi is determined.

Condenser side
Eq.1 to Eq.16 are used to determine the heat transfer coefficient on the outside of the condenser section and the
air side surface efficiency on the condenser side. The property values to be substituted are taken at the
temperature on the condenser side.

For the condenser side the heat transfer coefficient inside the pipe hi, is found by using the equation
given below.

For methanol C4=0.96, C5=0.27 and ΔTcd is the temperature difference between inside surface temperature and
inside temperature of the condenser.

Ԑ-NTU method
There are three methods available for predicting the performance of heat exchangers using heat pipes9. The
method used in the present study is effectiveness-number of transfer units7. The effectiveness-NTU equations
for a single row heat pipe heat exchanger are given as follows10.
For evaporator section,

For condenser section,
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For a heat pipe heat exchanger with n rows in the direction of flow, the effectiveness- NTU equations are given
below

For evaporator section,

For condenser section,

Since vapour inside the heat pipe is at constant temperature the specific heat cp and the capacity rate CL

become equal to infinity. So CH/CL and CC/CL become equal to zero. Therefore Eq.27 and Eq.28 reduce to the
following equations.

The overall effectiveness of the heat exchanger is given as,

If CH>CC,

If CC>CH

The outlet temperatures of the air from the evaporator and the condenser side are given by the equations given
below,
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Results And Discussion

A computer simulation program has been written based on the above analysis and results obtained are discussed
in this section. Methanol has been used as refrigerant and its thermodynamic properties have been calculated
using REFPROP. The following range of input data is used for the analysis.

Air inlet temperature at evaporator : 60 to 90ºC
Air inlet temperature at condenser : 30ºC
Refrigerant saturation temperature : 50ºC
Mass flow of air across evaporator : 0.1 to 0.5 kgs-1

Mass flow of air across condenser : 0.1 to 0.5 kgs-1

Diameter of the tube : 8 and 16 mm

Effect of mass flow of air
Figure 2 shows the effect of mass flow of air at evaporator inlet on overall heat transfer coefficient (U) across
the heat pipe heat exchanger for 8 and 16 mm tubes. As mass flow of air increases, air-side heat transfer
coefficient increases resulting in increase in overall heat transfer coefficient.

Figure 3 shows the effect of mass flow of air on heat transfer rate across the heat pipe heat exchanger
for 8 and 16 mm tubes. Heat transfer rate is a function of overall heat transfer coefficient. Hence, as mass flow
of air increases, heat transfer rate also increases due to increase in overall heat transfer coefficient (Fig. 2)

Figure 4 shows the effect of mass flow of air on effectiveness of heat pipe heat exchanger for 8 and 16
mm tubes. Effectiveness is a function of number of transfer units (NTU), which is directly proportional to 'U'
and inversely proportional to heat capacity rate of air (Cair). As mass flow of air increases, 'U' as well as 'C'
increase. However, increase in 'C' is more than that of 'U', resulting in decrease in NTU. This leads to decrease
in effectiveness.

Figure 5 shows the effect of mass flow of air on temperature range across heat pipe heat exchanger for 8
and 16 mm tubes. Temperature range is a function of heat pipe heat exchanger effectiveness. Hence as mass
flow of air increases, temperature range decreases due to decrease in effectiveness (Fig. 4).

Fig.2 mass flow of air at evaporator vs. overall heat transfer coefficient
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Fig.5 mass flow of air at evaporator vs. temperature range

Fig.3 mass flow of air at evaporator vs. heat transfer rate

Fig.4 mass flow of air at evaporator vs. heat exchanger effectiveness
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Effect of air inlet temperature
Figure 6 shows the effect of air inlet temperature at evaporator on overall heat transfer coefficient (U)

across the heat pipe heat exchanger for 8 and 16 mm tubes. As temperature of air increases, refrigerant-side free
convective heat transfer coefficient marginally increases due to increase in temperature potential. This results in
marginal increase in overall heat transfer coefficient.

Fig.6 air inlet temperature at evaporator vs. overall heat transfer coefficient

Fig.7 air inlet temperature at evaporator vs. heat transfer rate

Fig.8 air inlet temperature at evaporator vs. heat exchanger effectiveness
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Figure 7 shows the effect of air inlet temperature on heat transfer rate across the heat pipe heat
exchanger for 8 and 16 mm tubes. Heat transfer rate is a function of overall heat transfer coefficient. Hence, as
air inlet temperature increases, heat transfer rate also increases due to increase in overall heat transfer coefficient
(Fig. 6).

Figure 8 shows the effect of air inlet temperature on effectiveness of heat pipe heat exchanger for 8 and
16 mm tubes. Effectiveness is a function of number of transfer units (NTU), which is directly proportional to 'U'
and inversely proportional to heat capacity rate of air (Cair). As air inlet temperature increases, 'U' increases and
'C' remains constant. This results in increase in NTU, leading to marginal increase in effectiveness.

Figure 9 shows the effect of air inlet temperature on temperature range across heat pipe heat exchanger
for 8 and 16 mm tubes. Temperature range is a function of heat pipe heat exchanger effectiveness. Hence as air
inlet temperature increases, temperature range also increases due to increase in effectiveness (Fig. 8).

Overall heat transfer coefficient, heat transfer rate, effectiveness and temperature range are more for 16
mm tube compared to 8 mm tube. The reason is that as tube diameter increases, minimum flow area across heat
pipe heat exchanger decreases, resulting in increase in mass velocity. This leads to increase in air-side heat
transfer coefficient and 'U'. Due to increase in 'U', heat transfer rate, effectiveness and temperature range are
more for 16 mm tube.

Conclusion

Numerical studies have been carried out on the performance of methanol based air to air heat pipe heat
exchanger for varying operating conditions. A computer simulation model has been developed to predict the
thermal performance using -NTU method. Effects of air mass flow rate, inlet temperature and tube diameter on
system performance have been investigated and the following conclusions been drawn from the simulation
studies.
 Overall heat transfer coefficient and heat transfer rate across heat pipe heat exchanger increase as mass flow

of air, inlet temperature of air and tube diameter increase
 Effectiveness and temperature range across heat pipe heat exchanger increase as inlet temperature of air and

tube diameter increase whereas they decrease as mass flow of air increases.
These numerical studies provide a simple and effective approach for optimum sizing of heat pipe heat exchanger

to give better performance.

Fig.9 air inlet temperature at evaporator vs. temperature range
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