ChemTech

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN : 0974-4290 Vol.6, No.3, pp 1746-1748, May-June 2014

ICMCT-2014 [10th – 12th March 2014] International Conference on Materials and Characterization Techniques

Structural, Raman and Infrared properties of V_2O_5 and (MoO₃)_x- (V₂O₅)_{1-x} composites

Ch.Prameela¹ and K.Srinivasarao^{1*}

¹Department of Science and Humanities, Vignan University, Vadlamudi - 522 213, Andhra Pradesh, India.

*Corres.author: kotarisrinu@yahoo.co.in

Abstract: In this study we demonstrate the physical properties of $(MoO_3)_{x^-}$ $(V_2O_5)_{1-x}$ composites for x = 0, 0.2, 0.4, 0.6 and 0.8. The composites were characterized by studying their structure, Raman and IR properties. The structure of $(MoO_3)_{x^-}(V_2O_5)_{1-x}$ is orthorhombic and the grain size is decreases with increasing MoO_3 composition in $(MoO_3)_{x^-}(V_2O_5)_{1-x}$. The Raman vibrational modes were not observed for x=0.2. The enhancement of Raman intensity was observed for x = 0.8 indicates the improvement in the structural property of MoO_3 due to V_2O_5 doping. From the FTIR spectra it was observed that the band at 1009 cm⁻¹ is attributed to V=O stretching mode of V_2O_5 . The band shifts to 1014 cm⁻¹ indicating shortening of V-O₁band after incorporation of MoO_3 in V_2O_5 .

Keywords: V₂O₅, MoO₃, mixed oxide, characterization.

Introduction and Experimental

 V_2O_5 is widely used in elctrochromic, photochromic and thermo chromic devices. MoO₃ also exhibit photo chromic, thermo chromic and gasochromic properties. The interaction between V_2O_5 and MoO₃ is unique due to their similar ionic radii and nearly- identical structures in their higher oxidation state [1]. The present investigations are undertaken to study the properties of V_2O_5 and $(MoO_3)_x - (V_2O_5)_{1-x}$ composites.

Pure V_2O_5 powder (purity of 99.96 %) and MoO₃ powder (purity of 99.99 %) is used to prepare different composites of $(MoO_3)_{x}$ - $(V_2O_5)_{1-x}$ for 0 < x < 1. Various compositions of MoO_3 , V_2O_5 powders have been taken in the mortar and grind well to get fine powders of the mixed oxide and they were sintered at 450 ^oC. The structure of the composites was performed by X-ray diffractometer (Philips PW1830) in the 20 range from 10° to 70°. Raman spectra were recorded in the region of 0 to 1200 cm⁻¹. IR transmission spectra of composites were performed by FT-IR Spectrophotometer (JASCO FTIR-6300) in the range 600 to 4000 cm⁻¹.

Results and Discussion

The X-ray diffraction spectra for pure V_2O_5 and $(MoO_3)_x - (V_2O_5)_{1-x}$ for 0 < x < 1 were shown in Fig.1. The observed crystallographic orientations for pure V_2O_5 were (2 0 0), (0 1 0), (1 1 0), (1 0 1), (3 1 0), (1 1 1), (0 2 0), (4 1 1), (6 0 0). The data is good agreement with the JCPDS data (file no. 89-2483) of V_2O_5 and the phase is orthorhombic [2]. The grain sizes were evaluated from Scherrer's relation. At x=0.2 the intensities of (2 0 0), (1 0 1) peaks were decreased with increasing MoO₃ concentration. The grain sizes of these crystallographic orientations are also decreasing which indicates the MoO₃ confining crystallinity of V₂O₅ to small regions. At x=0.8 we observed (0 2 0), (1 1 0), (0 4 0), (0 2 1), (1 1 1), (0 6 0), (2 0 0), (1 1 2), (0 8 1) orientations which corresponds to orthorhombic phase of MoO₃[3].

The Raman spectra of $(MoO_3)_x$ - $(V_2O_5)_{1-x}$ for 0 < x < 1 were shown in Fig.2. For x=0 the Raman band at 145 cm⁻¹ is a rigid layer-like mode and corresponds to the vibrations of -O-V-O-V-O- atoms. Band at 190 cm⁻¹ is assigned to the stretching mode of $(V_2O_2)_n$. The two peaks located at 281 and 403 cm⁻¹ are assigned to the bending vibration of the V=O bonds. The peaks at 690, 992 cm⁻¹ were assigned to the doubly coordinated oxygen (V_2 –O) stretching mode and terminal oxygen (V=O) stretching mode [4]. x=0.2 is completely amorphous which indicate the presence of small quantity of MoO_3 destruct the layered structure of V_2O_5 . The growth of broad bands observed for x = 0.4 at 276 cm⁻¹ indicates wagging mode, 814 cm⁻¹ and a sharp but weak band at 988 cm⁻¹ indicates stretching modes[5]. With further increasing the MoO₃ composition in $(MoO_3)_{0.6}$ - $(V_2O_5)_{0.8}$ the predominant peaks observed were corresponding to MoO₃ with a weak single peak at 189 cm⁻¹ due to V₂O₅ and the remaining peaks were shifted. The result indicates that for x = 0.8 is the best composition which enhances the layered structure of MoO₃ due to V₂O₅ doping. The Infrared spectra recorded in the wavenumber range 600-4000 cm⁻¹ for $(MoO_3)_x$ - $(V_2O_5)_{1-x}$ for 0 < x < 1 are shown in Fig.3. For x=0 the absorption bands at 1647 cm⁻¹ is attributed to bending mode of O-H vibrations [4], 1009 cm⁻¹ is attributed to stretching mode (V=O), 826 cm⁻¹ is attributed to V-O stretching vibration, 622 cm⁻¹ arises due to different V-O bonds. At x = 0.2 band positions are shifted and few peaks are disappeared by increasing MoO₃ composition in V_2O_5 . Here the band shifts to 1014 cm⁻¹ indicating shortening of V-O₁ band after incorporation of MoO₃. The splitting and sharpening of bands in lower frequency range shows better order in mixed oxide films compared to their counter parts. The bands at 3744, 3612 cm⁻¹ is due to O-H stretching in water [6], 1697 cm⁻¹ is the bending mode of O-H vibration and shifted to higher frequency due to MoO_3 doping, mixed modes of V_2O_5 and MoO₃ is represented by the bands 1517 cm⁻¹ and 832 cm⁻¹ which corresponds to V-O stretching mode and shifted to higher frequency due to MoO₃ doping, 653 cm⁻¹ is due to different V-O bonds and shifted to higher frequency due to MoO₃ doping. Further increasing MoO₃ composition for x = 0.4 the peaks at 2861, 1794 cm⁻¹ is consisting of small amount of water [7]. The band at 1513cm⁻¹ shows no change in the mixed mode of vibration. The V-O vibrational frequency mode observed for pure V_2O_5 at 622 cm⁻¹ is shifting towards higher frequency for lower concentration of molybdenum oxide and is equal to anti-symmetric stretching mode of the Mo-O-Mo bridge. For x = 0.8 the two strong modes of vibrations observed at 987, 849 cm⁻¹ and these were attributed to the Mo = O bond stretching [8] and terminal Mo = O bond of Mo^{5+} [9].

Fig 1: XRD Spectra of $(MoO_3)_x$ - $(V_2O_5)_{1-x}$ for 0<x<1.

Fig 2: Raman spectra of $(MoO_3)_x$ - $(V_2O_5)_{1-x}$ for 0 < x < 1.

Fig 3: IR spectra of $(MoO_3)_x$ - $(V_2O_5)_{1-x}$ for 0<x<1 from 600- 2000 cm⁻¹.

References

- 1. Bielanski A, Najbar M., V₂O₅-MoO₃ catalysts for benzene oxidation, Appl. Catal. A., 1997,157, 223.
- Harikrishna K, Hussain O. M and Julien C, Spectroscopic and electrochromic properties of activated reactive evaporated nano-crystalline V₂O₅ thin films grown on flexible substrates, International Nano Letters, 2013.
- 3. Wang Y, Zhu Y, Xing Z, Qian Y, Hydrothermal synthesis of MoO₃ and the influence of later heat treatment on its electrochemical properties, Int. J. Electrochem. Sci., 2013, 8, 9851-9857.
- 4. Chen W, Mai L. Q, Peng J. F, Xu Q, Zhu Q. Y., Raman spectroscopic study of vanadium oxide nanotubes, journal of solid state chemistry, 2004, 177, 377-379.
- Navas I, Vinod Kumar R, Lethy k. J, Detty A. P, Ganesan V, Sathe V and Pillai V. P. M, Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing, J. Phys. D: Appl. Phys. 2009, 42, 175305.
- 6. Dyrek K and Labanowska M, ESR and IR studies of propylene oxidation on V₂O₅-MoO₃ at low temperatures, Applied Catalysis, 1986, 23, 63-67.
- Patil C. E, Jadhav P. R, Tarwal N. L, Deshmukh H. P, Karanjkar M. M, Patil M. S, Electochromic performance of mixed V₂O₅-MoO₃ thin films synthesized by pulsed spray pyrolysis technique, Materials Chemistry and Physics, 2011, 126, 711-716.
- 8. SrinivasaRao K, RajiniKanth B, Mukhopadhyay P. K, Optical and IR studies on r.f. magnetron sputtered ultra-thin MoO₃ films, ApplPhys A, 2009, 96, 985-990.
- 9. Nirupama V, Uthanna S, Influence of sputtering power on the physical properties of magnetron sputtered molybdenum oxide films, J Mater. Sci: Mater Electron 2010, 21, 45-52.