www.sphinxsai.com

Crystal structure of 2,3-Bis(2-nitrophenyl)oxirane

T. Sankar ${ }^{1}$, Potharaju Raju ${ }^{2}$, Arasambattu K. Mohanakrishnan ${ }^{2}$, S. Naveen, ${ }^{3}$ N. K. Lokanath ${ }^{4}$ and K.Gunasekaran ${ }^{1 *}$
${ }^{1}$ Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-600 025, India.
${ }^{2}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, India.
${ }^{3}$ Institution of Excellence, University of Mysore, Manasagangotri, Mysore-570 006, India.
${ }^{4}$ Department of Studies in Physics, University of Mysore,Manasagangotri, Mysore-570 006, India.

Abstract

Single crystals of 2,3-Bis(2-nitrophenyl)oxirane (NOXI) were grown by slow evaporation method and X-ray diffraction analysis reveals monoclinic $\mathrm{P} 2_{1} / \mathrm{c}$ space group with unit cell dimensions of $a=7.936$ (1) $\AA, b=22.815$ (3) $\AA, c=7.0437$ (9) \AA and $\beta=94.484$ $(8)^{\circ}$. The oxirane group (O11/C10/C12) makes a dihedral angle of 74.08(1) ${ }^{\circ}$ \&6.18(1) ${ }^{\circ}$ with the two nitro substituted phenyl rings ($\mathrm{C} 1-\mathrm{C} 6 / \mathrm{N} 7 / \mathrm{O} 8 / \mathrm{O} 9$) \& (C13$\mathrm{C} 18 / \mathrm{N} 19 / \mathrm{O} 21 / \mathrm{O} 20$). The crystal structure is stabilized by C-H...O type intra \& intermolecular interaction in addition to van der Waals forces.

Keywords : Oxirane, Bis nitrophenyl, crystal packing, hydrogen bonds.

Introduction

Compounds with epoxy group are found to be useful in paints, composite formations, development of adhesins as well as in many microelectronic applications with biphenyl-type epoxy compounds ${ }^{1,2,3}$. When endogenous as well as xenobiotic compounds undergoing oxidative metabolism via chemical and enzymatic oxidation processes, epoxides; three-membered oxygen compounds are generated. The epoxides are generally unstable in aqueous environments and reactive. These epoxide intermediates have been implicated as potential mutagenic and carcinogenic agents ${ }^{4,5,6}$. It becomes importance for the biological organism to regulate levels of these reactive species at any given time. In view of the above said important properties, structural analyses of such epoxy containing compounds are carried out by many investigators. The present study explains the structural details of one such derivative.

The ORTEP plot of the molecule is shown in Fig. 2. The oxirane group (O11/C10/C12) makes a dihedral angle of $74.15(15)^{\circ}$ with the nitro substituted phenyl ring $1(\mathrm{C} 1-\mathrm{C} 6)$, it makes a dihedral angle of $66.21(16)^{\circ}$ with the nitro substituted phenyl ring $2(\mathrm{C} 13-\mathrm{C} 18)$. The dihedral angle between the two phenyl rings is $76.94(10)^{\circ}$. The packing of the crystal is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdot \cdots \mathrm{O}$ hydrogen bonds (Fig. $3)$.

Experimental

The reaction of 2-nitrobenzaldehyde $(0.5 \mathrm{~g}, 3.30 \mathrm{mmol})$ with triethyl phosphite $(1.09 \mathrm{~g}, 6.61 \mathrm{mmol})$ in the presence of $\mathrm{ZnBr} 2(0.075 \mathrm{~g}, 0.330 \mathrm{mmol})$ at room temperature. The reaction mixture was then stirred at the
same temperature for 30 minutes (slightly exothermic). After the consumption of the starting material (monitored by TLC), the reaction mass was poured over crushed ice (50 g) and extracted with ethyl acetate (2 x 15 mL). Then obtained trans-epoxide as a colorless solid• Single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of the compound in chloroform/ ethyl acetate.

Results and Discussion

Data Collection

X-ray diffraction intensity data were collected for NOXI on Bruker axs Kappa Apex II single crystal X-ray diffractometer equipped with graphite mono- chromate $\operatorname{MoK} \alpha$ ($\lambda=0.7103 \AA$) radiation and CCD detector. Crystals were cut to suitable size and mounted on a glass fibre using cyano acrylate adhesive. The unit cell parameters were determined from 36 frames measured (0.5° phi-scan) from three different crystallographic zones and using the method of difference vectors. The intensity data were collected with an average four-fold redundancy per reflection and optimum resolution ($0.75 \AA$). The intensity data collection, frames integration, Lorentz and polarization correction and decay correction were done using SAINT-NT (version7.06a) software. Empirical absorption correction (multi-scan) was performed using SADABS program. The Laue group assignment, systematic absences and intensity statistics were consistent with centro symmetry indicating space group $\mathrm{P} 2{ }_{1} / \mathrm{c}$ with lattice parameter $\mathrm{a}=7.936$ (1) $\AA, \mathrm{b}=22.815$ (3) $\AA, \mathrm{c}=7.0437$ (9) \AA and $\beta=94.484$ (8) ${ }^{\circ}$.

Structure Refinement

Crystal structure was solved by Direct Methods using SHELXS-97. All the non hydrogen atoms were located without any difficulty. The structure was then refined by full-matrix least-squares method using SHELXL- 97. The arrived model was refined using isotropic thermal parameters followed by anisotropic thermal parameters refinements. After completion of the refinement where R factor is converged with negligible shift/e.s.d and agrreable GooF and other parameters, hydrogen atoms were positioned geometrically $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and allowed to ride on their parent atoms, with $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl $\mathrm{H} 1.2 U_{\mathrm{eq}}(\mathrm{C})$ for other H atoms.

Crystal Structure Analysis

Table 1 Crystal data for NOXI

Parameters	Values
Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{5}$
Formula weight	286.24
Temperature	$296(2) \mathrm{K}$
Wavelength	$1.54178 \AA$
Crystal system, space group	Monoclinic, $\mathrm{P} 2_{1} / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=7.9360(10) \AA$
	$\mathrm{b}=22.815(3) \AA \quad \beta=94.484(8)^{\circ}$
	$\mathrm{c}=7.0437(9) \AA$
Volume	$1271.4(3) \AA^{3}$
Z, Calculated density	$4,1.495 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.985 \mathrm{~mm}^{-1}$
$\mathrm{~F}(000)$	592
Crystal size	$0.30 \times 0.27 \times 0.25 \mathrm{~mm}$
Theta range for data collection	5.59 to 64.61°
Limiting indices	$-9<=\mathrm{h}<=8,-23<=\mathrm{k}<=26,-8<=\mathrm{l}<=8$
Reflections collected / unique	$8256 / 2097[\mathrm{R}($ int $)=0.0624]$
Completeness to theta $=64.61$	98.10%
Max. and min. transmission	0.7908 and 0.7565
Refinement method	Full-matrix least-squares on F^{2}

Data / restraints / parameters	$2097 / 0 / 191$
Goodness-of-fit on F^{2}	1.069
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0434, \mathrm{wR} 2=0.1244$
R indices (all data)	$\mathrm{R} 1=0.0604, \mathrm{wR} 2=0.1355$
Extinction coefficient	$0.0052(9)$
Largest diff. peak and hole	0.227 and $-0.183 \mathrm{e} . \AA^{\AA-3}$

Table 2 Atomic coordinates $\left(x 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for the nonhydrogen atoms of NOXI

Atom	\mathbf{x}	\mathbf{y}	\mathbf{Z}	$* \mathbf{U}(\mathbf{e q})$
C1	$2464(2)$	$2887(1)$	$1420(2)$	$41(1)$
C2	$3680(3)$	$3327(1)$	$1742(2)$	$41(1)$
C3	$5341(3)$	$3141(1)$	$2107(3)$	$50(1)$
C4	$5756(3)$	$2551(1)$	$2212(3)$	$56(1)$
C5	$4516(3)$	$2130(1)$	$1902(3)$	$55(1)$
C6	$2870(3)$	$2295(1)$	$1477(3)$	$48(1)$
N7	$677(2)$	$3033(1)$	$1017(2)$	$53(1)$
O8	$117(2)$	$3461(1)$	$1773(3)$	$76(1)$
O9	$-184(2)$	$2713(1)$	$-58(3)$	$87(1)$
C10	$3309(3)$	$3967(1)$	$1643(2)$	$44(1)$
O11	$4764(2)$	$4333(1)$	$1518(2)$	$61(1)$
C12	$3911(3)$	$4358(1)$	$3216(3)$	$43(1)$
C13	$3060(2)$	$4932(1)$	$3571(2)$	$42(1)$
C14	$2276(2)$	$5075(1)$	$5212(2)$	$41(1)$
C15	$1598(3)$	$5625(1)$	$5496(3)$	$49(1)$
C16	$1656(3)$	$6045(1)$	$4104(3)$	$56(1)$
C17	$2390(3)$	$5915(1)$	$2448(3)$	$57(1)$
C18	$3094(3)$	$5368(1)$	$2193(3)$	$49(1)$
N19	$2099(2)$	$4644(1)$	$6730(2)$	$47(1)$
O20	$1499(2)$	$4803(1)$	$8172(2)$	$71(1)$
O21	$2514(2)$	$4136(1)$	$6463(2)$	$72(1)$

* $\mathrm{Ueq}_{\mathrm{eq}}=(1 / 3) \sum \mathrm{i} \sum \mathrm{j} \mathrm{U}_{\mathrm{ij}} \mathrm{ai}^{*}{ }^{*} \mathrm{a}_{\mathrm{j}}{ }^{*} \mathbf{a j} \cdot \mathbf{a j}$

Table 3 Anisotropic displacement parameters ($\AA^{\mathbf{2}} \mathbf{x} 0^{\mathbf{3}}$) for thenon-hydrogen atoms of NOXI

Atom	U11	U22	U33	U23	U13	U12
C1	$42(1)$	$40(1)$	$40(1)$	$-5(1)$	$3(1)$	$2(1)$
C2	$48(1)$	$40(1)$	$35(1)$	$-4(1)$	$1(1)$	$-1(1)$
C3	$46(1)$	$52(1)$	$51(1)$	$-9(1)$	$-1(1)$	$-4(1)$
C4	$48(1)$	$58(1)$	$61(1)$	$-6(1)$	$-1(1)$	$13(1)$
C5	$63(2)$	$42(1)$	$59(1)$	$-5(1)$	$5(1)$	$10(1)$
C6	$55(1)$	$38(1)$	$53(1)$	$-6(1)$	$8(1)$	$-1(1)$
N7	$47(1)$	$48(1)$	$64(1)$	$-6(1)$	$4(1)$	$0(1)$
O8	$61(1)$	$61(1)$	$108(1)$	$-20(1)$	$14(1)$	$16(1)$
O9	$54(1)$	$88(1)$	$117(2)$	$-35(1)$	$-17(1)$	$-3(1)$
C10	$52(1)$	$37(1)$	$43(1)$	$-1(1)$	$5(1)$	$-5(1)$
O11	$68(1)$	$47(1)$	$73(1)$	$-6(1)$	$32(1)$	$-11(1)$
C12	$41(1)$	$39(1)$	$49(1)$	$-4(1)$	$5(1)$	$-5(1)$
C13	$40(1)$	$34(1)$	$49(1)$	$-6(1)$	$-3(1)$	$-9(1)$

C14	$37(1)$	$35(1)$	$49(1)$	$-3(1)$	$-4(1)$	$-6(1)$
C15	$44(1)$	$41(1)$	$63(1)$	$-10(1)$	$1(1)$	$-1(1)$
C16	$49(1)$	$36(1)$	$83(1)$	$-3(1)$	$-6(1)$	$0(1)$
C17	$59(2)$	$42(1)$	$68(1)$	$10(1)$	$-7(1)$	$-11(1)$
C18	$54(1)$	$42(1)$	$52(1)$	$1(1)$	$1(1)$	$-10(1)$
N19	$43(1)$	$46(1)$	$52(1)$	$0(1)$	$0(1)$	$-4(1)$
O20	$92(1)$	$73(1)$	$49(1)$	$-1(1)$	$13(1)$	$4(1)$
O21	$86(1)$	$44(1)$	$90(1)$	$15(1)$	$26(1)$	$12(1)$

The anisotropic displacement factor takes the form: $\exp \left\{-2 \pi^{2}\left[h^{2} \mathbf{a}^{* 2} \mathbf{U}_{11}+\ldots+2 h k a * b * U_{12}\right]\right\}$

Table 4 Bond Length and Bond Angle of NOXI

Atoms	Length	Atoms	Angle
C1-C6	$1.389(3)$	C6-C1-C2	$122.52(19)$
C1-C2	$1.398(3)$	C6-C1-N7	$116.52(17)$
C1-N7	$1.463(3)$	C2-C1-N7	$120.96(16)$
C2-C3	$1.390(3)$	C3-C2-C1	$116.35(17)$
C2-C10	$1.492(2)$	C3-C2-C10	$119.28(18)$
C3-C4	$1.385(3)$	C1-C2-C10	$124.33(18)$
C4-C5	$1.380(3)$	C4-C3-C2	$121.6(2)$
C5-C6	$1.370(3)$	C5-C4-C3	$120.3(2)$
N7-O8	$1.213(2)$	C6-C5-C4	$119.98(18)$
N7-O9	$1.221(2)$	C5-C6-C1	$119.22(19)$
C10-O11	$1.433(2)$	O8-N7-O9	$123.1(2)$
C10-C12	$1.471(3)$	O8-N7-C1	$118.79(17)$
O11-C12	$1.421(2)$	O9-N7-C1	$118.11(16)$
C12-C13	$1.503(3)$	O11-C10-C12	$58.56(11)$
C13-C18	$1.392(3)$	O11-C10-C2	$114.60(17)$
C13-C14	$1.394(3)$	C12-C10-C2	$120.41(16)$
C14-C15	$1.386(3)$	C12-O11-C10	$62.07(11)$
C14-N19	$1.467(2)$	O11-C12-C10	$59.37(11)$
C15-C16	$1.374(3)$	O11-C12-C13	$115.08(15)$
C16-C17	$1.376(3)$	C10-C12-C13	$121.93(17)$
C17-C18	$1.384(3)$	C18-C13-C14	$116.39(17)$
N19-O20	$1.211(2)$	C18-C13-C12	$118.32(17)$
N19-O21	$1.223(2)$	C14-C13-C12	$125.25(16)$

Table 5 Intermolecular Hydrogen bond interactions for NOXI [\AA and ${ }^{\circ}$]

Compound	D-H...A	D-H	H...A	D...A	D...H...A
NOXI	$\mathrm{C} 10-\mathrm{H} 10 \ldots \mathrm{O} 20^{\mathrm{i}}$	0.98	2.56	$3.336(2)$	137
	$\mathrm{C} 15-\mathrm{H} 15 \ldots \mathrm{OB}^{\mathrm{ii}}$	0.93	2.45	$3.212(3)$	140
	C18- $\mathrm{H} 18 \ldots \mathrm{O} 11^{\mathrm{iii}}$	0.93	2.47	$3.299(3)$	148

Symmetry codes:

$$
\begin{aligned}
\text { i. } & -\mathrm{x},-\mathrm{y}, 2-\mathrm{z} \\
\text { ii. } & 1-\mathrm{x},-\mathrm{y}, 1-\mathrm{z} \\
\text { iii. } & \mathrm{x}, \mathrm{y},-1+\mathrm{z}
\end{aligned}
$$

The crystal data and structure refinement details are given in Table 1. The chemical diagram of NOXI is shown in Fig.1. The molecular structure (ORTEP diagram) of NOXI is shown in Fig. 2. The portion of molecular packing is shown in Fig. 3. The atomic coordinates are given in Table 2. The anisotropic displacement parameters are listed in Table 3. Selected bond lengths and bond angles are listed in Table 4. The various hydrogen bond geometrical parameters are presented in Table 5 .

The ORTEP plot of the molecule is shown in Fig. 2. The oxirane ($\mathrm{O} 11 / \mathrm{C} 10 / \mathrm{C} 12$) plane is oriented with two nitro phenyl rings $(\mathrm{C} 1-\mathrm{C} 6) \&(\mathrm{C} 13-\mathrm{C} 18)$ by assuming dihedral angles of $74.08(1)^{\circ} \& 66.18(1)^{\circ}$, respectively. The dihedral angle between the two phenyl rings is $76.88(1)^{\circ}$.

Fig. 1 Schematic Diagram of the NOXI

Fig. 2 Perspective view of the NOXI with the atom numbering scheme Displacement ellipsoids are drawn at $\mathbf{3 0 \%}$ probability level.

Fig. 3. Portion of packing of the molecules viewed down the \boldsymbol{c}-axis for NOXI

Packing Features

C-H...O types of intermolecular interaction makes $\mathrm{R}^{2}(5) \& \mathrm{R}^{2}(10)$ ring motifs. This kind of hydrogen bond network along a and c axis stabilize the crystal packing (Fig 3).

Computational detail

Data collection: APEXII; cell refinement: SAINT; data reduction: SAINT; program(s) used to solve structure: SHELXS97; program(s) used to refine structure: SHELXL97; molecular graphics: PLATON; software used to prepare material for publication: SHELXL97 and PARST.

CCDC 1408772 contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223336 033; or e-mail: deposit@ccdc.cam.ac.uk.

Acknowledgements

The authors are thankful to Institution of Excellence, University of Mysore for providing the singlecrystal X-ray diffraction facility.

References

1. Kim, W. G. \& Lee, J. Y. (2002). J. Appl. Polym. Sci. 86, 1942-1952.
2. Yoda, N. (1997). Polym. Adv. Technol. 8, 215-226.
3. Lee, H. \& Neville, K. (1990). In Handbook of Epoxy Resins . New York: McGraw-Hill.
4. Adams et al. (Chem. Biol. Interact. 95 (1995) 57-77) Epoxide hydrolases: biochemistry and molecular biology.
5. Guengrich (Properties and Metabolic roles 4 (1982) 5-30).
6. Sayer et al. (J.Biol. Chem. 260 (1985) 1630-1640).
7. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
8. Cho, C.-S., Liau, W.-B. \& Chen, L.-W. (1999). Acta Cryst. B55, 525-529.
9. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
10. Flippen-Anderson, J. L. \& Gilardi, R. (1981). Acta Cryst. B37, 1433-1435.
11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
12. Spek, A. L. (2009). Acta Cryst. D65, 148-155.
