
 
 

 
 

International Journal of PharmTech Research  
 

CODEN (USA): IJPRIF,   ISSN: 0974-4304           
Vol.8, No.4, pp 622-631,          2015 

 

Adaptive Biological Control of Generalized Lotka-Volterra 
Three-Species Biological System 

 
Sundarapandian Vaidyanathan 

 
R & D Centre, Vel Tech University, Avadi, Chennai, Tamil Nadu, INDIA 

 
 

Abstract: Recent research has shown the importance of biological control in many 

biological systems appearing in nature. This paper investigates research in the dynamic and 

chaotic analysis of the generalized Lotka-Volterra three-species biological system, which was 

studied by Samardzija and Greller (1988). The generalized Lotka-Voterra biological system 

consists of two predator and one prey populations. This paper displays the phase portraits of the 

3-D generalized Lotka-Volttera system when the system undergoes chaotic behaviour. Next, this 

paper derives adaptive biological control for globally stabilizing the trajectories of the 

generalized Lotka-Volterra three-species biological system with unknown parameters. All the 

main results are proved using Lyapunov stability theory. Also, numerical simulations have been 

plotted using MATLAB to illustrate the main results for the three-species generalized Lotka-

Volterra biological system. 
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Introduction 

Chaos theory describes the qualitative study of deterministicchaotic dynamical systems, and a chaotic 

system must satisfy three properties: boundedness, infinite recurrence and sensitive dependence on initial 

conditions [1-2].  

The first famous chaotic system was discovered by Lorenz, when he was developing a 3-D weather 

model for atmospheric convection in 1963[3].  Subsequently, Rössler discovered a 3-D chaotic system in 1976 

[4], which is algebraically much simpler than the Lorenz system. These classical systems were followed by the 

discovery of many 3-D chaotic systems such as Arneodo system [5], Sprott systems [6], Chen system [7], Lü-

Chen system[8], Cai system[9], Tigan system [10], etc. Many new chaotic systems have been also discovered 

in the recent years like Sundarapandian systems [11, 12], Vaidyanathan systems [13-37], Pehlivan system [38], 

Pham system [39], etc.   

An agricultural ecosystem comprises a dynamic web of biological relationships among crop plants or 

trees, herbivores, predators, preys, disease organisms, etc. Organisms in an ecosystem interact in many ways 

through competition. These organisms constantly evolve and depend on each other and thereby they create a 

diverse, complex and dynamic environment.  

One of the famous examples of simple biological models is the two-species predator-prey model 

developed by Lotka and Volterra [40]. Lotka-Voltera system describes the interaction of a two-species 

predator-prey model and id consists of a system of two nonlinear ordinary differential equations. This is a very 

popular model and it has many applications of interacting two-species systems. However, this model also has 

limitations such as it ignores many important factors such as interactions between another species of the same 

ecosystem, interactions with the environment etc. Thus, three-species models of biological species have more 
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importance. Arneodo et al. [41] have shown that one can obtain chaotic behaviour for three species in an 

ecosystem. Three species predator-prey models typically consist of one-prey and two predators, and in this 

research work, we investigate such a three-species biological generalized Lotka-Volterra system investigated 

by Samardzija and Greller [42]. 

This paper discusses the chaotic properties of the three-species generalized Lotka-Volterra biological 

system [42], and MATLAB plots are shown for the phase portraits of the chaotic system. This paper also 

derives new results of adaptive biologicalcontroller design for the three-species generalized Lotka-Volterra 

biological system using Lyapunov stability theory [43] and MATLAB plots are shown to illustrate the main 

results. Active control method is a feedback control strategy which works with the knowledge of system 

parameters [44-58]. Adaptive control method is a feedback control strategy which is very effective in control 

theory because it makes use of the estimates of the unknown parameters of the system [59-74].Chaos theory 

has many important applications in chemistry [75] and biology [76]. 

Generalized Lotka-Volterra Three-Species Biological System 

Samardzija and Greller (1988, [42]) derived a generalized Lotka-Volterra three-species biological system, 

which is described by the 3-D system of differential equations 
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In (1), 
1x is the prey population, 

2 3,x x are predator populations and , ,a b c are positive constants.  

In [42], it was shown that the three-species biological system (1) is chaotic when we take 

2.9851,     3,       2a b c            (2) 

For numerical simulations, we take the initial conditions as 
1(0) 1.2,x  2 (0) 1.2x  and

3(0) 1.2.x   

The 3-D phase portrait of the generalized Lotka-Volterra system(1) is depicted in Figure 1. The 2-D 

projections of the generalized Lotka-Volterra systems (2) on the coordinate planes are depicted in Figures 2-4. 

 

Figure1.The3-D phase portrait of the generalized Lotka-Volterra chaotic system 
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Figure2.The2-D projection of the generalized Lotka-Volterra system on 
1 2( , )x x plane 

 

Figure3.The2-D projection of the generalized Lotka-Volterra system on 
2 3( , )x x plane 

 

Figure4.The2-D projection of the generalized Lotka-Volterra system on 
1 3( , )x x plane 
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Adaptive Control of the Generalized Lotka-Volterra Three-Species Biological System 

The chaotic behaviour of the generalized Lotka-Voterra three-species biological system [42] is an 

example of the explosive route to chaos and it is attributed to the non-transversal saddle connection type 

bifurcation. Also, it is observed that the chaotic solution of the generalized Lotka-Volterra biological system (1) 

portrays a fractal torus in the 3-D phase space. 

 In this section, we consider the controlled generalized Lotka-Volterra system given by the 3-D 

dynamics 
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In (3),
1 2 3, ,x x x  are the states and 

1 2 3, ,u u u are the adaptive biological controls to be found using 

estimates of the unknown parameters , ,a b c of the system (3).  

Our control goal is to drive the states of the generalized 3-species Lotka-Volterra system (3) to desired 

values of the states, say, , , ,   respectively. 

Thus, we define the tracking errors as 
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The tracking error dynamics is obtained as 
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We consider the adaptive controller defined by 
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where
1 2 3, ,k k k are positive gain constants. 

Substituting (6) into (5), we get the closed-loop control system given by 
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We define parameter estimation errors as follows: 
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Using (8), we can simplify the error dynamics (7) as follows. 
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Differentiating the parameter estimation errors (8) with respect to time, we get 
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Next, we consider the candidate Lyapunov function given by 

 2 2 2 2 2 2
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which is a positive definite function on 6.R  

Differentiating V along the trajectories of (9) and (10), we obtain 
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In view of (12), we take the parameter estimates as follows: 
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Theorem 1.The generalized Lotka-Volterra three-species biological system (3) is exponentially 

regulated to the steady-state values , ,   by the adaptive biological control law (6) and the parameter update 

law (13), where 
1 2 3, ,k k k are positive gain constants. 

Proof.The quadratic Lyapunov function V defined by Eq. (11) is a positive definite function on 6.R  

Substituting the parameter update law (13) into (12), the time-derivative of V is obtained as 

2 2 2

1 1 2 2 3 3 ,V k e k e k e             (14) 

which is a negative semi-definite function on 6.R  

Thus, by Lyapunov stability theory, we conclude that the tracking error  ( ) 0e t  exponentially as 

t  for all initial conditions 3(0) .e R This completes the proof.   

Numerical Simulations 

We use classical fourth-order Runge-Kutta method in MATLAB with step-size for solving the 

systems of differential equations given by (3) and (13).  

We take the gain constants as 8ik  for 1,2,3.i  We take 2,  3  and 4.   

The parameter values are taken as in the chaotic case, viz. 2.9851,a  3b  and 2.c   

We take the initial conditions of the system(3) as 
1(0) 5.4,x  2 (0) 8.1x  and 

3(0) 6.9.x   

Also, we take ˆ(0) 12.5,a  ˆ(0) 15.3b  and ˆ(0) 20.7.c   
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Figures 5-7 show the time-history of the exponential convergence of the states 
1 2 3, ,x x x to desired target 

values , ,   respectively. 

 

Figure5.Regulation of the controlled state 1x to 2   

 

Figure6. Regulation of the controlled state 2x to 3   
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Figure7. Regulation of the controlled state 3x to 4  Conclusions 

In this paper, new results have been derived for the analysis and adaptive biological control of the three-

species generalized Lokta-Volterra biological system discovered by Samardzija and Greller (1988). After a 

description and dynamic analysis of the chaotic 3-D three species Samardzija-Greller model, we have designed an 

adaptive biological feedback controller for the global exponential regulation of the states of the three-species 

generalized Lotka-Volterra biological system.The main results have been proved using Lyapunov stability theory 

and numerical simulations have been illustrated using MATLAB. 
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