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Abstract: Since the recent research has shown the importance of biological control in
many biological systems appearing in nature, this research paper investigates research in the
dynamic and chaotic analysis of the generalized Lotka-Volterra three-species biological system,
which was studied by Samardzija and Greller (1988). The generalized Lotka-Voterra biological
system consists of two predator and one prey populations. This paper depicts the phase portraits
of the 3-D generalized Lotka-Volttera system when the system undergoes chaotic behaviour. The
hybrid synchronization of master and slave chaotic systems deals with the coexistence of both
complete synchronization and anti-synchronization in the synchronizing of states of the master
and slave systems. Next, this paper derives adaptive biological control law for achieving global
and exponential hybrid chaos synchronization ofthe states of the generalized Lotka-Volterra
three-species biological systems with unknown parameters. All the main results are proved using
Lyapunov stability theory. Also, numerical simulations have been plotted using MATLAB to
illustrate the main results for the three-species generalized Lotka-Volterra biological system and
its adaptive hybrid synchronization.
Keywords: Chaos, chaotic systems, chaos synchronization, chaos control, hybrid
synchronization, biology, biological system, Lotka-Volterra system, etc.

1. Introduction

Chaos theory describes the qualitative study of deterministic chaotic dynamical systems, and a chaotic
system must satisfy three properties: boundedness, infinite recurrence and sensitive dependence on initial
conditions [1-2].

The classical chaotic systems are due to Lorenz, who discovered chaos while studying a 3-D weather
model in 1963 [3], and Rossler, who discovered chaos, while he was studying chemical reactions in 1976 [4].
These classical systems were followed by the discovery of many 3-D chaotic systems such as Arneodo system
[5], Sprott systems [6], Chen system [7], Lü-Chen system[8], Cai system[9], Tigan system [10], etc. Many new
chaotic systems have been also discovered in the recent years like Sundarapandian systems [11,12],
Vaidyanathan systems [13-43], Pehlivan system [44], Pham system [45], etc.

In control theory, active control method is used when the parameters are available for measurement
[46-65]. Adaptive control is a popular control technique used for stabilizing systems when the system
parameters are unknown [66-80]. There are also other popular methods available for control and
synchronization of systems such as backstepping control method [81-87], sliding mode control method [88-
100], intelligent control [101-110], etc.

Recently, chaos theory is found to have important applications in several areas such as chemistry [111-
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128], biology [129-160], memristors [161-163], electrical circuits [164], etc.

One of the famous examples of simple biological models is the two-species predator-prey model
developed by Lotka and Volterra [165]. Lotka-Voltera system describes the interaction of a two-species
predator-prey model and id consists of a system of two nonlinear ordinary differential equations. This is a very
popular model and it has many applications of interacting two-species systems. However, this model also has
limitations such as it ignores many important factors such as interactions between another species of the same
ecosystem, interactions with the environment etc. Thus, three-species models of biological species have more
importance.

Arneodo et al. [166] have shown that one can obtain chaotic behaviour for three species in an
ecosystem. Three species predator-prey models typically consist of one-prey and two predators, and in this
research work, we investigate such a three-species biological generalized Lotka-Volterra system investigated
by Samardzija and Greller [167].

An agricultural ecosystem comprises a dynamic web of biological relationships among crop plants or
trees, herbivores, predators, preys, disease organisms, etc. Organisms in an ecosystem interact in many ways
through competition. These organisms constantly evolve and depend on each other and thereby they create a
diverse, complex and dynamic environment.

This paper depicts the phase portraits of the 3-D generalized Lotka-Volttera system [167] when the system
undergoes chaotic behaviour.  The hybrid synchronization of master and slave chaotic systems deals with the
coexistence of both complete synchronization and anti-synchronization in the synchronizing of states of the master
and slave systems.

Next, this paper derives adaptive biological control law for achieving global and exponential hybrid chaos
synchronization of the states of the generalized Lotka-Volterra three-species biological systems with unknown
parameters. All the main results are proved using Lyapunov stability theory.

Also, numerical simulations have been plotted using MATLAB to illustrate the main results for the three-
species generalized Lotka-Volterra biological system and its adaptive hybrid synchronization.

2. Generalized Lotka-Volterra Three-Species Biological System

Samardzija and Greller ([167], 1988) derived a generalized Lotka-Volterra three-species biological system,
which is described by the 3-D system of differential equations
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In (1), 1x is the prey population, 2 3,x x are predator populations and , ,a b c are positive constants.
In [167], it was shown that the three-species biological system (1) is chaotic when we take

2.9851,    3,      2a b c= = = (2)
For numerical simulations, we take the initial conditions as

1(0) 1.2,x = 2 (0) 1.2,x = 3(0) 1.2.x = (3)
The 3-D phase portrait of the generalized Lotka-Volterra system(1) is depicted in Figure 1.

The 2-D projections of the generalized Lotka-Volterra systems (2) on the coordinate planes are depicted in
Figures 2-3.
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Figure 1.The3-D phase portrait of the generalized Lotka-Volterra chaotic system

Figure 2.The2-D projection of the generalized Lotka-Volterra system on 1 2( , )x x plane

Figure 3.The2-D projection of the generalized Lotka-Volterra system on 2 3( , )x x plane

3. Adaptive Hybrid Chaos Synchronization of the Generalized Lotka-Volterra Three-Species
Biological Systems

The chaotic behaviour of the generalized Lotka-Voterra three-species biological system [167] is an
example of the explosive route to chaos and it is attributed to the non-transversal saddle connection type
bifurcation. Also, it is observed that the chaotic solution of the generalized Lotka-Volterra biological system (1)
portrays a fractal torus in the 3-D phase space.
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In this section, we use adaptive control method for achieving global and exponential hybrid chaos
synchronization of the states of the generalized Lotka-Volterra three-species biological systems.

As the master system, we consider the generalized Lotka-Volterra system given by the 3-D dynamics
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In (4), 1 2 3, ,x x x  are the states and , ,a b c  are unknown parameters of the system.
As the slave system, we consider the generalized Lotka-Volterra system given by the 3-D dynamics
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In (5), 1 2 3, ,y y y are the states and 1 2 3, ,u u u  are adaptive controls to be determined.
We define the hybrid chaos synchronization error between the systems (4) and (5) as
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Thehybrid synchronization error dynamics is obtained as
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We consider the adaptive controller defined by
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where 1 2 3, ,k k k are positive gain constants.
Substituting (8) into (7), we get the closed-loop control system given by
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We define parameter estimation errors as follows:
ˆ( )
ˆ( )
ˆ( )

a

b

c

e a a t

e b b t
e c c t

= -ì
ï

= -í
ï = -î

(10)

Using (10), we can simplify the error dynamics (9) as follows.
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Differentiating the parameter estimation errors (10) with respect to time, we get
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Next, we consider the candidate Lyapunov function given by
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Differentiating V along the trajectories of (11) and (12), we obtain
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In view of (14), we take the parameter estimates as follows:
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Theorem 1.The generalized Lotka-Volterra three-species biological systems (4) and (5) are globally and
exponentially hybrid chaos synchronized for all initial states 3(0), (0)x y ÎR by the adaptive biological control
law (8) and the parameter update law (15), where 1 2 3, ,k k k are positive gain constants.

Proof. The quadratic Lyapunov function V defined by Eq. (13) is a positive definite function on 6.R

Substituting the parameter update law (15) into (14), the time-derivative of V is obtained as
2 2 2

1 1 2 2 3 3 ,V k e k e k e= - - -& (16)
which is a negative semi-definite function on 6.R

Thus, by Lyapunov stability theory [168], we conclude that the hybrid chaos synchronization error
( ) 0e t ® exponentially as t ® ¥ for all initial conditions 3(0) .e ÎR This completes the proof. n

4. Numerical Simulations

We use classical fourth-order Runge-Kutta method in MATLAB with step-size for solving the systems
of differential equations given by (4), (5) and the parameter update law (15).

We take the gain constants as 6ik = for 1, 2,3.i =

The parameter values of the systems (3) and (4) are taken as in the chaotic case, i.e.

2.9851,    3,      2a b c= = = (17)
We take the initial conditions of the master system (3) as

1 2 3(0) 27.5,   (0) 23.1,   (0) 11.4x x x= = = (18)
We take the initial conditions of the slave system (4) as

1 2 3(0) 2.9,   (0) 12.8,   (0) 20.3y y y= = = (19)
Also, we take the initial conditions of the parameter estimates as

ˆˆ ˆ(0) 4.1,  (0) 2.6,  (0) 5.8a b c= = = (20)

Figures 4-6 show the hybrid chaos synchronization of the states of the generalized Lotka-Volterra 3-species
biological systems (3) and (4). Figure 7 shows the time-history of the hybrid chaos synchronization errors
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1 2 3, , .e e e

Figure 4. Hybrid synchronization of the states 1x and 1y

Figure5. Hybrid synchronization of the states 2x and 2y

Figure 6. Hybrid synchronization of the states 3x and 3y
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Figure 7. Time-history of the hybrid chaos synchronization errors 1 2 3, ,e e e

5. Conclusions

In this paper, new results have been derived for the analysis and adaptive hybrid chaos synchronization of
the three-species generalized Lokta-Volterra biological systems discovered by Samardzija and Greller (1988).
After a description and dynamic analysis of the chaotic 3-D three species Samardzija-Greller model, we have
designed an adaptive biological feedback controller for theglobal exponential and hybrid chaos synchronization of
the states of the three-species generalized Lotka-Volterra biological systems. The main results have been proved
using Lyapunov stability theory and numerical simulations have been illustrated using MATLAB.
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