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Abstract: In  the  recent  decades,  there  is  significant  interest  in  the  literature  in  the
application of chaos in physical, electrical, chemical and biological systems.  This paper
investigates research in the dynamic analysis and global chaos synchronization of enzymes-
substrate reactions system with ferroelectric behaviour in brain waves which was studied by
Enjieu Kadji, Chabi Orou, Yamapi and Woafo (2007). The enzymes-substrates system is a 2-D
non-autonomous system with a cosinusoidal forcing term. This paper depicts the phase portraits
of the 2-D enzymes-substrates system when the system undergoes chaotic behaviour. Next, this
paper derives new results for the global chaos anti-synchronization of the identical enzyme-
substrates biological systems with uncertain parameters via backstepping control method. The
main control result derived in this work is proved using Lyapunov stability theory. MATLAB
plots have been shown in this paper to illustrate the main results for the enzyme-substrates
system.
Keywords: Chaos, enzymes-substrate reactions, biology, anti-synchronization, backstepping
control, etc.

1. Introduction

Chaos theory is a modern research field which discusses the qualitative and numerical study of unstable
aperiodic behaviour in deterministic nonlinear dynamical systems. A dynamical system is called chaotic if it
satisfies the three properties: boundedness, infinite recurrence and sensitive dependence on initial conditions [1-
2].

In 1963, Lorenz [3] discovered a 3-D chaotic system when he was studying a 3-D weather model for
atmospheric convection. After a decade, Rössler [4] discovered a 3-D chaotic system, which was constructed
during the study of a chemical reaction. These classical chaotic systems paved the way to the discovery of many
3-D chaotic systems such as Arneodo system [5], Sprott systems [6], Chen system [7], Lü-Chen system [8], Cai
system [9], Tigan system [10], etc.  Many new chaotic systems have been also discovered in the recent years
like Sundarapandian systems [11, 12], Vaidyanathan systems [13-43], Pehlivan system [44], Pham system [45],
etc.

In control theory, active control method is used when the parameters are available for measurement [46-
65]. Adaptive control is a popular control technique used for stabilizing systems when the system parameters
are unknown [66-80]. There are also other popular methods available for control and synchronization of
systems such as backstepping control method [81-87], sliding mode control method [88-100], intelligent control
[101-110], etc.

Recently, chaos theory is found to have important applications in several areas such as chemistry [111-
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128], biology [129-160], memristors [161-163], electrical circuits [164], etc.

Coherent oscillations in biological systems are studied by Frohlich [165] and the following suggestions
were made which are taken as a physical basis for theoretical investigation of enzymatic substrate reaction with
ferroelectric behaviour in brain waves model [166].

1. When metabolic energy is available, long-wavelength electric vibrations are very strongly and coherently
excited in active biological system.

2. Biological systems have metastable states with a very high electric polarization.

These long range interactions may lead to a selective transport of enzymes, and hence specific chemical
reactions may become possible.   Enjieu Kadji, Chabi Orou, Yamapi and Woafo (2007) derived enzymes-
substrates reactions system with ferroelectric behaviour in brain waves [167]. Specifically, chaotic behaviour was
noted for the 2-D enzyme-substrate reactions system. This paper discusses the chaotic properties of the enzyme-
substrates reactions system, and MATLAB plots are shown for the phase portraits of the chaotic system.

This paper also derives new results of adaptive backstepping controller for the global chaos anti-
synchronization of enzymes-substrate systems, which are established using Lyapunov stability theory [168].
MATLAB plots are shown to illustrate all the main results derived in this work.

2.  Enzymes-Substrates Reaction System

Enjieu Kadji, Chabi Orou, Yamapi and Woafo derived enzyme-substrate reactions system with ferroelectric
behaviour in brain waves [167], which is given by the differential equation

( )2 4 61 cos( )x x ax bx x x E tm- - + - + = W&& & (1)

In (1),  are positive parameters,  is the parameter of nonlinearity, while  and  are the amplitude and the
frequency of the external cosinusoidal excitation, respectively.
The enzymes-substrates reaction system (1) can be compactly put in system form as
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For the external excitation, we take the constants as
8.27,  3.465E = W = (3)

The biological system (2) is chaotic when the system parameters are chosen as
2.55,  1.70,  2.001a b m= = = (4)

For numerical simulations, we take the initial conditions (0) 0.1x =  and (0) 0.1.y =

The 2-D phase portrait of the enzymes-substrates biological reaction system is depicted in Fig. 1.

Figure 1. The 2-D phase portrait of the enzymes-substrates biological reaction system
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3. Global Chaos Anti-Synchronization of the Enzymes-Substrates Reaction Systems

In this section, we design an adaptive backstepping feedback control law for globally anti-synchronizing
the enzymes-substrates reaction system with uncertain parameters and  It is supposed that the constants
and  associated with the external excitation  are maintained at the constant values given in
equation (3). It is also supposed that the nonlinear parameter  is maintained at the constant value given in
equation (4).

As the master system, we consider the controlled enzymes-substrates reaction system given by

( )
1 1

2 4 6
1 1 1 1 1 11 cos( )

x y

y y x ax bx x E tm
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í = - + - - + Wïî

&

&
(5)

As the slave system, we consider the controlled enzymes-substrates reaction system given by

( )
2 2
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In (6), u  is the adaptive backstepping control to be found using estimates ˆˆ( ), ( )a t b t of the uncertain parameters
, ,a b respectively.

Now, we define the anti-synchronization error between the systems (5) and (6) as

2 1

2 1

x

y

e x x
e y y
= +ìï
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(7)

Then the error dynamics is obtained as
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Now, we define the parameter estimation errors as
ˆ( )
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Differentiating (9) with respect to  we get
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Next, we shall state and prove the main result of this section.

Theorem 1. The enzymes-substrates reaction systems (5) and (6) with uncertain system parameters  and are
globally and exponentially anti-synchronized for all initial conditions by the adaptive control law

( ) ( )
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where 0k >  is a gain constant,

2 ,x yz e e= + (12)

and the update law for the parameter updates ˆˆ( ), ( )a t b t  is given by
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Proof. We prove this result by applying backstepping control and Lyapunov stability theory [168].
First, we define a quadratic Lyapunov function
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2
1 1 1

1( ) ,
2

V z z= (14)

1 xz e= (15)
Differentiating 1V  along the dynamics (12), we get

( )2
1 1 1 1 1 x yV z z z z e e= =- + +& & (16)

Now, we define
2 x yz e e= + (17)

Substituting (17) into (16), we obtain
2

1 1 1 1 1 2V z z z z z= = - +& & (18)
Next, we define a quadratic Lyapunov function

( )2 2
2 1 2 1 1

1( , , , ) ( )
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which is positive definite on 4.R
Differentiating (19) along the dynamics (8) and (10), we get
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Substituting the feedback control law (11) into (21), we obtain

[ ] ( ) ( )4 4 6 6
2 2 1 1 2 2 1 1 2
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Using (9), the equation (22) can be simplified as

( ) ( )4 4 6 6
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Substituting the value of  from (23) into (20), we get
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Substituting the parameter update law (13) into (24), we get
2 2

2 1 2(1 )V z k z= - - +& (25)

which is  a negative semi-definite function on 4.R

By Barbalat’s lemma in Lyapunov stability theory [168], it follows that the errors ( ), ( )x ye t e t
exponentially converge to zero as t ®¥  for all initial conditions.

This completes the proof. n

4.  Numerical Simulations

We use classical fourth-order Runge-Kutta method in MATLAB with step-size 810h -= for solving the
systems of differential equations given by (5) and (10), when the backstepping control law (8) is applied.

We take the gain constant as 10.k =
We take the initial conditions of the master system (5) as 1(0) 0.4,x = 1(0) 0.8.y =
We take the initial conditions of the slave system (6) as 2 (0) 0.8,x = 2 (0) 1.2.y =
The parameter values are taken as in (3) and (4) for the chaotic case, viz.

8.27, 3.465, 2.55, 1.70, 2.001E a b m= W = = = =
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Also, we take ˆ(0) 1.8a =  and ˆ(0) 0.4.b =

Figs. 2-3 show the anti-synchronization of the enzymes-substrates reaction systems (5) and (6).

Fig. 4 shows the time-history of the chaos anti-synchronization errors ( ), ( ).x ye t e t

From Fig. 4, it is clear that the synchronization errors converge exponentially as time gets large.

Figure 2. Anti-synchronization of the states 1 2( ), ( )x t x t

Figure 3. Anti-synchronization of the states 1 2( ), ( )y t y t

Figure 4. Time-history of the anti-synchronization errors ( ), ( )x ye t e t
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5. Conclusions

In this paper, new results have been derived for the enzymes-substrates reaction with ferroelectric
behaviour in brain waves discovered by Enjieu Kadji, Chabi Orou, Yamapi and Woafo (2007). This paper has
presented a good description and dynamic analysis of the chaotic 2-D non-autonomous attractor describing the
enzymes-substrates reaction systems. Then this paper presented new results for the global chaos anti-
synchronization of the identical enzymes-substrates reaction systems with uncertain parameters. The main results
have been proved using backstepping control and Lyapunov stability theory. Also, numerical simulations using
MATLAB were shown to elucidate the main results.
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