

International Journal of PharmTech Research

CODEN (USA): IJPRIF, ISSN: 0974-4304, ISSN(Online): 2455-9563 Vol.14, No.01, pp 20-38, 2021

PharmTech

Formulation Development and Stabilization of Quinapril in Low dose Pill

Farheen Aslam*

Under supervision of Dr. Arvind Rathour, Head, Department of Pharmaceutics, Dr. H S Lamba DG, HRIT College of Pharmacy, Ghaziabad, India.

Abstract : Hypertension is the most common risk factor for cardiovascular diseases, stroke and renal failure. A recent guideline by the Joint National Commission (JNC8 guidelines) recommended both angiotensin-converting enzyme (ACE) inhibitors & calcium channel blockers (CCB) as first-line drugs, in addition to diuretics. The increasing prevalence of hypertension leads to boom in the medicinal sector for the effective medications, fixed dose & multiple dose combinations are studied & provided to patient's leads to the several adverse effects to patients therefore Low Dose Single Pill Therapy got recognition. Quinapril is efficacious drug of BCS Class I (high soluble, high permeable), but it prone to degradation reactions like hydrolysis, oxidation & cyclization easily to diketopiperazine impurity. Formation of diketopiperazine is a major stability issue to the potent ACE inhibitors. Therefore a stable formulation designing is a basic challenge in the formulation of the quinapril tablets. Degradation can be observed in the tablets at processing, storage & packing stage on elevated temperature or moisture to the active moiety & formulation. Therefore formulating & is quite challenging. Formulation designed contains a magnesium carbonate as stabilizer in different process optimization which prevent API to form impurity. The optimized formulation results found are satisfactory with accelerated stability study.

Keywords: Quinapril, Low dose pill, Formulation, stabilization.

Introduction

Oral Dosage Form

Oral Drug Delivery is the most desirable and preferred method of administrating therapeutic agents. For many drug substances, conventional immediate release formulations provide effective therapy while maintaining pharmacokinetic and pharmacodynamics profiles with an acceptable level of safety to patient.

The oral route remains the preferred route of drug administration due to its convenience, good patient compliance and lower medicine production costs (Yadav, 2009).

Farheen Aslam /International Journal of PharmTech Research, 2021,14(1): 20-38.

DOI= http://dx.doi.org/10.20902/IJPTR.2021.140103

Immediate Release Tablet

The term "immediate release" pharmaceutical formulation includes any formulation in which the rate of release of drug from the formulation and/or the absorption of drug, is neither appreciably, nor intentionally, retarded by galenic manipulations (Gabrielsson J *et. al*, 2002).

Immediate release formulations are intended for immediate action i.e. to disintegrate quickly when come in contact with body fluid based on type of Disintegrant used.

Tablets for immediate release often consist of filler, a binder, lubricants and disintegrants. In many cases, the disintegration time of solid dosage forms is too long to provide appropriate therapeutic effect. To improve the disintegration time, so-called super-disintegrants are used.

An immediate release pharmaceutical preparation offers

- Improved compliance/added convenience and stability.
- Suitable for controlled/sustained release actives.
- Allows high drug loading.
- Ability to provide advantages of liquid medication in the form of solid preparation.
- Adaptable and amenable to existing processing and packaging machinery.
- Economical and cost effective.
- Quick onset of action.
- Suitable for industrial production.
- Improved stability and bioavailability.
- Unique product differentiation.

Hypertension or high blood pressure is the condition when blood pressure increases to an unhealthy level. It is very harmful and can lead to stroke, heart failure, heart attack, kidney diseases & several other heart dysfunctions. The main purpose of anti-hypertension drug is to lower and control high blood pressure to protect organs like brain, heart, kidneys. Change in lifestyle and elevated stress levels have increased the prevalence of hypertension globally, thereby increasing the demand for hypertension drugs.

Anti-Hypertensive Drugs are used for treat hypertension & prevent the complications of high blood pressure to treat conditions like cardiovascular disease, strokes, myocardial infarction, ischemic heart disease & other complications.

ACE Inhibitors ACE inhibitors are category of anti- hypertensive drugs which inhibits the angiotensin-converting enzyme (ACE) activity. ACE enzyme is engaged in conversion of angiotensin I into angiotensin II. Angiotensin II is a potent vasoconstrictor. Examples: captopril, enalapril, fosinopril, quinapril, ramipril etc.

Quinapril is anti- hypertensive drugs of category of ACE inhibitor used to treat hypertension by decreasing reninangiotensin-aldosterone system activity effectively. Quinapril is used in adjunctive therapy in the management of heart failure & ischemic heart disease with combination with diuretics, calcium channel blockers & other hypertensive drugs.

Mechanism of Action

Quinapril inhibits angiotensin converting enzyme (ACE), an enzyme which catalyses the formation of angiotensin II from angiotensin I. Angiotensin II increases blood pressure by vasoconstriction.

Quinapril HCl is a non-peptide, non-sulfhydryl pro-drug that is de-esterified to quinaprilat (quinapril diacid) which is an active metabolite. Quinaprilat lowers blood pressure by antagonizing the effect of the Renin-Angiotensin-Aldosterone System (RAAS).

The RAAS is a body homeostatic mechanism for regulating water and electrolyte balance. During sympathetic stimulation or when blood pressure is reduced, renin is released from kidneys. In the blood stream, renin cleaves angiotensinogen to AT I, which is converted to AT II by Angiotensin-Converting Enzyme (ACE).

ATII increases blood pressure by stimulating the aldosterone secretion. Aldosterone increases sodium and water reabsorption. ATII also stimulates the vasopressin secretion (Anti-Diuretic Hormone or ADH) which enhances water reabsorption from the kidneys. ACE inhibitors inhibit the rapid conversion of ATI to ATII and antagonize the RAAS system. Angiotensin-Converting Enzyme is also involved in the bradykinin deactivation which is a vasodilator. ACE Inhibitors increases bradykinin levels in blood causing increased vasodilation and decreased blood pressure.

Materials And Methods

(Aarti Industries) Ltd., Basic magnesium carbonate Heavy P Grade (AICL), Lactose Monohydrate (Pharmatose 200M) (DFE), Crospovidone (Kollidon CL F) (BASF), Povidone K 30 (Kollidon 30) (BASF), Magnesium stearate (Ligamed MF-2-V) (Peter Greve

Table 1: Comparative composition of Reference product& Test products:								
Component	Function	Manufacturer / Supplier						
Quinapril Hydrochloride	Active pharmaceutical ingredient	Aarti Industries Ltd.						
Crospovidone	Disintegrant	BASF						
Povidone	Binder	BASF						
Lactose	Filler/ Diluent	DFE						
Magnesium carbonate	Stabilizer	AICL						
Magnesium stearate	Lubricant	Peter Greven						

Formulation Trials (Prototype to final formulations) Table 2: Prototype Formulation Plan

FORMULATIONS									
FORMULATION	F1	F2	F3	F4	F5	F6	F7	F8	F9
AIM/OBJECTIVE	Wet Granulatio n	Organic Solvent in wet granulation to reduce related substances	API addition (Quinapril HCl) in lubrication	Organic slurry method with Stabilizer (MgCO3) & API (Quinapril HCl) to reduce related substances	Binder change from gelatin to Povidone 30 (Slurry method) in wet granulation	Use of Light magnesium oxide instead of magnesium carbonate as stabilizer	Batch with MCC & SSF	Direct compression with Compactol, Tablettose & SSF	Dissolution profile matching with povidone binder
Material Name				Quan	tity (mg/tablet)			•	
				DRY MIX					
Quinapril Hydrochloride eq. to Quinapril	43.320	43.320	-	43.320	-	43.638	43.638	43.638	43.320
Lactose Monohydrate	256.680	95.180	220.680	-	145.000	200.000	144.36 2	-	144.680
Crospovidone	15.000	8.500	10.000	-	16.000	10.000	12.000	18.000	12.000
Basic Magnesium Carbonate (Heavy)	-	240.000	110.000	110.00	-	-	-	-	180.000
Povidone K 30	-	-	-	-	20.000	30.000	-	-	-
Light Magnesium Oxide	-	-	-	-	-	113.317	-	-	-
Microcrystalline cellulose	-	-	-	-	-	-	180.00 0	-	-
Compactrol (Calcium sulfate dehydrate)	-	-	-	-	-	-	-	180.000	-
Tablettose 100 (Lactose)	-	-	-	-	-	-	-	154.362	-
BINDER	11.11%	5.56%	7.06%	17.34%	1.08%	7.70%	7.70%	-	7.70%
Gelatin	10.000	10.000	12.000	12.000	-	-	-	-	-
Povidone K 30	-	-	-	-	-	-	10.000	-	10.000
Quinapril Hydrochloride eq. to Quinapril	-	-	-	-	43.320	-	-	-	-
Basic Magnesium Carbonate (Heavy)	-	-	-	-	171.680	-	-	-	-
Ethanol	-	q.s	-	q.s	-	-	-	-	-
Purified water	q.s.	-	q.s.	-	q.s.	q.s.	q.s.	-	q.s.
			-	PRE-LUBRICATION	N		•		
Crospovidone	15.000	2.000	-	10.000	-	-	6.000	-	6.000
Basic Magnesium Carbonate	65.000	-	-	-	-	-	-	-	-
Quinapril Hydrochloride eq.	-	-	43.320	-	-	-	-	-	-

to Quinapril											
Lactose Monohydrate	-	-	-	220.680	-	-	-	-	-		
Magnesium stearate	-	-	-	-	-	3.000	-	-	-		
LUBRICATION											
Magnesium stearate	5000	1.000	4.000	4.000	4.000	-	-	-	4.000		
Sodium steryl fumarate	-	-	-	-	-	-	4.000	4.000	-		
Core tablets weight	410.000	400.000	400.000	400.000	400.000	410.000	400.00 0	382.000	400.00		

Tablet 10 : Prototype Formulation Process

FORMULATIONS									
FORMULATION	F1	F2	F3	F4	F5	F6	F7	F8	F9
AIM/ OBJECTIVE	Wet Granulation	Organic Solvent in wet granulation to reduce related substances	API addition (Quinapril HCl) in lubrication	Organic slurry method with Stabilizer (MgCO3) & API (Quinapril HCl) to reduce related substances	Binder change from gelatin to Povidone 30 (Slurry method) in wet granulation	Use of Light magnesium oxide instead of magnesium carbonate as stabilizer	Batch with MCC & SSF	Direct compression with Compactol, Tablettose & SSF	Dissolution profile matching with povidone binder
SIFTING	Sieving of all	the ingredients th	rough sieve # 40						
DRY MIX	Quinapril HCl, Lactose Monohydrate & Crospovidone were mixed in RMG for 10 mins.	Quinapril HCl, Lactose Monohydrate, Crospovidone & heavy Magnesium Carbonate were mixed in RMG for 10 mins.	Lactose Monohydrate, Crospovidone & Basic Magnesium Carbonate, were mixed in RMG for 10 mins.	Quinapril HCl & Basic Magnesium Carbonate was mixed in RMG for 10 mins.	Lactose Monohydrate, Povidone K 30 & Crospovidone were mixed in RMG at for 10 mins.	Quinapril HCl, Lactose Monohydrate, Crospovidone, Povidone K 30 &Light Magnesium oxide were mixed in a RMG mix for 10 mins	Quinapril HCl, Lactose Monohydrate, Crospovidone , microcrystalli ne cellulose were mixed in a RMG mix for 10 mins	Quinapril HCl, Crospovidone , compactrol & tablettose were mixed in a RMG mix for 10 mins	Quinapril HCl, Lactose Monohydrate & Crospovidone, heavy Magnesium Carbonate were mixed in RMG for 10 mins.
BINDER	11.11% gelatin binder	5.56% gelatin binder	7.06% gelatin binder	17.34% gelatin binder	1.08%	7.70% Povidone K 30	7.70% Povidone K 30	-	7.70% Povidone K 30
WET MIX	Binder was added to dry mix slowly & properly to get desired	Binder was added to dry mix slowly & properly to get desired	Binder was added to dry mix slowly & properly to get desired	Binderwasadded to dry mixslowly&properly to getdesired granules.	Slurry was added slowly in dry mix in 5 mins at slow speed. After	Binderwasadded todrymixslowlyin6minsat50	Binder was added to dry mix slowly in 6 mins at 50	-	Binder was added to dry mix slowly in 6 mins at 50 RPM. Kneading

	granules.	granules.	granules.		mixing chopper	RPM.	RPM.		was provided for
					& Impeller	Kneading was	Kneading		1 min at 100
					were run for 1	provided for 1	was provided		RPM. Wet
					mın.	min at 100	for 1 min at		granules were
						RPM. Wet	100 RPM.		passed through
						granules were	wet granules		sieve #8
						through signa	through size		
						#8	#8		
	Heat dried at	Heat dried at	TT . 1 . 1 .		TT - 1 - 1 - 1	Heat dried at	Heat dried at		
	60°C until	60°C until	Heat dried at	Heat dried at	Heat dried at	60°C until	60°C until		Heat dried at
	LOD is not	LOD is not	LOD is not	60°C until LOD	LOD is not	LOD is not	LOD is not	LOD abaakad at	60°C until LOD is
DRYING	more than	more than	LOD IS HOL more than	is not more than	more than 2.0%	more than	more than	105°C	not more than
	2.0% then	2.0% then	2.0% then sifts	2.0% then sifts	then sifts	2.0% then	2.0% then	180%)	2.0% then sifts
	sifts through	sifts through	through #24.	through #30.	through #24.	sifts through	sifts through	1.00707	through #30.
	#20.	#20.				#20.	#30.		
	Add			Add Lactore		Add	Add		
	& Basic	Add	Add Quinapril	Monohydrate		magnesium	Crospovidone		Add
	Magnesium	Crospovidone	Hydrochloride	and		stearate with	with dried		Crospovidone
PRE-	Carbonate	with dried	with dried	Crospovidone		dried blend in	blend in an		with dried blend
LUBRICATION	with dried	blend and	blend and	with dried blend	-	an octagonal	octagonal	-	in an octagonal
	blend and	mixed	mixed	and mixed		blender at 110	blender at		blender at 110
	mixed	10 mins	mins	properly for 10		RPM for 10	110 RPM for		RPM for 10 mins.
	properly for	10 11115.		mins.		mins.	10 mins.		
	10 mins.								
	Add	Add	Add		Add		Add sodium	Add sodium	
	Magnesium	Magnesium	Magnesium	Add Magnesium	stearate with		steryl	steryl	Add Magnesium
	stearate with	stearate with	stearate with	stearate with	blend in		fumarate with	fumarate with	stearate with pre-
LUBRICATION	prelubricated	prelubricated	prelubricated	prelubricated	sandwich	-	blend in an	blend in an	lubricated blend
	blend and	blend and	blend and mix	blend and mix	manner and		octagonal	octagonal	in an octagonal
	mix properly	mix properly	properly for 3	mins	blend for 3		110 RPM for	110 RPM for	RPM for 3 mins
	for 3 mins.	for 3 mins.	mins.	111113.	mins at 10		3 mins.	3 mins.	KI WI IOI 5 IIIIIS.
	Commerces the 1	ubminated blass 1 is	a double reterry	managion	KPM.				
	Longress the li	ubricated blend if $5.00 \times 6.85 \text{ mm}$	a uouble rotary) co	mpression machine	using				
COMPRESSION	Lower nunch 1	15.00×0.05 mm 15.00×6.85 mm	capsule shape, con	icave, chilossed with					
	Dies: 15.00 x 6	.85 mm capsule s	shape	10010					
L									

Optimization Trials:

Optimization of Stabilizer (Basic magnesium carbonate Heavy P Grade):

Objective : Trials were performed with \pm 22.22% of target concentration of stabilizer Qty. (Basic magnesium carbonate Heavy P Grade).

Table 11: Optimization of Stabilizer (Basic magnesium carbonate Heavy P Grad
--

	Formulation	S1	S2	S 3		
S. No.	Ingredient Qty/Tablet (mg)					
DRY MIX						
1	Quinapril Hydrochloride	43.320	43.320	43.320		
2	Basic magnesium carbonate Heavy P Grade	140.000	180.000	220.000		
3	Crospovidone (Kollidon CL F)	12.000	12.000	12.000		
4	Lactose Monohydrate (Pharmatose 200M)	184.680	144.680	104.680		
BINDER						
5	Gelatin	-	-	-		
6	Povidone K 30 (Kollidon 30)	10.000	10.000	10.000		
7	Purified water	q.s.	q.s.	q.s.		
PRE-LUB	RICATION					
8	Crospovidone (Kollidon CL F)	6.000	6.000	6.000		
LUBRICA	ATION					
9	Magnesium stearate (Ligamed MF-2-VF)	4.000	4.000	4.000		
Core table	tweight	400.000	400.000	400.000		

Optimization of Disintegrant (Crospovidone (Kollidon CL F)) Concentration:

Objective: Trials were performed with \pm 20.00% of target concentration of Disintegrant (Crospovidone (Kollidon CL F):

Table 12: Optimization	of Disintegrant (Crospovidone	(Kollidon C	L F)) Concentration:
	01 2 million 9 million (Crospo raone	(_ _ <i>))</i> concentration

Formu	lation	D1	D2	D3
S. No.	g)			
DRY N	ЛІХ			
1	Quinapril Hydrochloride**	43.320	43.320	43.320
2	Basic magnesium carbonate Heavy P Grade	180.000	180.000	180.000
3	Crospovidone (Kollidon CL F)	9.600	12.000	14.400
4	Lactose Monohydrate (Pharmatose 200M)	148.280	144.680	141.080
BINDE	ER (7.7% binder paste)			
5	Povidone K 30 (Kollidon 30)	10.000	10.000	10.000
6	Purified Water	q.s.	q.s.	q.s.
PREL	UBRICATION			
7	Crospovidone (Kollidon CL F)	4.800	6.000	7.200
LUBR	ICATION			
8	Magnesium stearate (Ligamed MF-2V)	4.000	4.000	4.000

Optimization of Binder (Povidone K 30) Concentration:

Objective: Trials were performed with $\pm 20.0\%$ of target concentration of binder Povidone K 30:

 Table 13: Optimization of Binder (Povidone K 30) Concentration:

	Formulation	B1	B2	B3					
S. No.	Ingredient		Qty/Tablet (mg)						
DRY MIX									
1	Quinapril Hydrochloride	43.320	43.320	43.320					
2	Basic magnesium carbonate Heavy P Grade	180.000	180.000	180.000					
3	Crospovidone (Kollidon CL F)	12.000	12.000	12.000					
4	Lactose Monohydrate (Pharmatose 200M)	146.680	144.680	142.680					
BINDER (7.7% binder paste)									
5	Povidone K 30 (Kollidon 30)	8.000	10.000	12.000					
6	Purified Water	q.s.	q.s.	q.s.					
PRELUBRICATION									
7	Crospovidone (Kollidon CL F)	6.000	6.000	6.000					
	LUBRICATI	ON							
8	Magnesium stearate (Ligamed MF-2V)	4.000	4.000	4.000					

Optimization of Lubricant (Magnesium Stearate) Concentration:

Objective: Trials were performed with \pm 25.0% of target concentration of Magnesium stearate as lubricant.

Fable 14: Optimization of Lubrican	t (Magnesium Stearate)	Concentration:
------------------------------------	------------------------	----------------

	Formulation	L1	L2	L3			
S. No.	Ingredient Qty/Tablet (mg)						
DRY MIX							
1	Quinapril Hydrochloride	43.320	43.320	43.320			
2	Basic magnesium carbonate Heavy P Grade	180.000	180.000	180.000			
3	Crospovidone (Kollidon CL E)	12.000	12.000	12.000			
4	Lactose Monohydrate (Pharmatose 200M)	146.680	145.680	144.680			
BINDER (7	.7% binder paste)						
5	Povidone K 30 (Kollidon 30)	10.000	10.000	10.000			
6	Purified Water	q.s.	q.s.	q.s.			
PRELUBR	ICATION						
7	Crospovidone(Kollidon CL F)	6.000	6.000	6.000			
LUBRICAT	FION						
8	Magnesium stearate(Ligamed MF-2V)	2.000	3.000	4.000			

Compression: Compress the lubricated blend in 35-station (double rotary) compression machine using

Upper punch: 15.00 x 6.85 mm capsule shape, concave, embossed with QU40

Lower punch: 15.00 x 6.85 mm capsule shape, concave

Dies: 15.00 x 6.85 mm capsule shape

S. No.	Physical Parameter	Limits
1	Appearance	White to off white elliptical tablets, debossed with 'QU 40" on one side and plain on another side.
2	Average weight	$400.00 \text{ mg} \pm 3.0 \% \text{ w/w} (388.00 \text{ mg} \text{ to } 412.00 \text{ mg})$
3	Weight variation	$400.00 \text{mg} \pm 5.0 \%$ (380.00 mg to 420.00 mg)
4	Thickness	$4.6 \text{ mm} \pm 0.3 \text{ mm} (4.3 \text{ mm to } 4.9 \text{ mm})$
5	Dimensions	15.00 x 6.85mm ± 0.1mm (14.90x6.75mm to 15.10x6.95mm)
6	Hardness	120 N± 40 N (80 N to 160 N)
8	Friability	NMT 1% w/w
9	Disintegration Time	NMT 15 Mins

Table 15:	Physical	parameter	of tablet	and	their	limits
I upic IC.	I IIy bicui	pui unicici	or cubice	unu	Union	

Results & Discussion

Protoype Formualtion

Table 21: Physical Properties of Prototype Formulation

Formulation		Physical Properties								
Formulatio	11	Bulk Density	Tapped Densi	ity	Hausner Ratio		Carr's Index			
F1		0.647 g/mL	0.852 g/mL		1.3	317	24.10%			
F2		0.590 g/mL	0.760 g/mL		1.2	281	22.37%			
F3		0.613 g/mL	0.798 g/mL		1.3	302	23.18%			
F4		0.598 g/mL	0.802 g/mL		1.3	341	25.44%			
F5		0.490 g/mL	0.627 g/mL		1.2	278	21.74%			
F9		0.545 g/mL	0.690 g/mL		1.2	266	21.01%			
Compression F	Param	neters								
Formulation		Average Weight	Thickness	Hardness		Disintegration Time				
F1	409	.852 mg to 411.710 mg	4.84mm to 4.89mm	94.5 N to 104.5 N		53 secs to 1 min				
F2	40	0.10 mg to 403.71 mg	4.80mm to 4.84mm	90.2 N	to 83.2 N	2 r	nin 30 secs to 3 mins			
F3	40	0.14 mg to 402.62 mg	4.78mm to 4.84mm	78.3 N	N to 87.5 1 m N to		nin 36 secs to 2 mins			
F4	40	1.10 mg to 403.58 mg	4.77mm to 4.84mm	78.8 N to 87.5 N		2 min 36 secs to 3 min 05 secs				
F5 40		1.80 mg to 402.91 mg	4.96mm to 4.99mm	63 N	to 79N	4 r to 5	nin 52 secs min 10 secs			
F9	400	0.30 mg to 401.300 mg	4.50mm to 4.57mm	126N	to 142 N	3 to 3	min.10 sec min. 42 sec.			

lat	Related Substances							
nu	Quinapril Related Quinapril Relat		Single Unknown	Total Impurity	Assav			
no	Compound A	Compound A Compound B		(NMT 3.6%)	Аззау			
¥.3	(NMT 1.0%) (NMT 3.0%) (NMT 0.2%)		(NMT 0.2%)	(1001 5.070)				
F1	9.04%	0.35%	0.06%	9.51%	94.90%			
F2	3.68%	0.65%	0.08%	4.62%	100.80%			
F3	0.74%	0.27%	0.34%	1.50%	96.80%			
F4	2.17%	7.33%	0.66%	10.47%	96.80%			
F5	0.27%	0.14%	0.01%	0.42%	99.10%			
F7	0.22%	0.10%	BQL	0.32%	100.70%			

Table 23: Impurity Profiling of Prototype Formul	ations
--	--------

Figure 9: Graphical representation of assay of prototype formulation

Figure 8: Graphical representation of impurity profiling of prototype formulations

Formulation	Apparatus : USP Ty	Dissolution Apparatus : USP Type I (Basket) Medium : Water (900mL) Agitation speed :100 RPM								
	10 min	15 min	20 min	30 min	45 min					
F1	89 %	89 %	89 %	89 %	89 %					
F5	48 %	78 %	91 %	94 %	94 %					
F9	93 %	99 %	99 %	99 %	99 %					

Table 24: Dissolution Profile of Prototype Formulations

Figure 10: Graphical representation of Dissolution Profile of prototype formulation

Result

F1, F2& F4 formulation have higher impurity profile while formulation F3have lowest assay profile, F5 formulation have found to be variable drug release profile. F7 Formulation is found to have the lowest impurity profile, stable drug release profile as per IVIV Correlation therefore it is optimized final formulation.

5.3Optimization of stabilizer (Basic magnesium carbonate Heavy P Grade)

Table 25: Physical Properties of Prototype Formulation

		Physical Properties								
Formulation	Bulk Density	Tapped Density	Hausner Rati	0	Carr's Index					
S1	0.518	0.667	1.288		22.368					
S2	0.545	0.690	1.266		21.014					
S3	0.493	0.691	1.400		28.571					
		Compress Parameters	S							
Formulation	Average Weight	Thickness	Hardness	Dis	integration Time					
S1	412.01mg to 416.10mg	4.70mm to 4.80mm	94N to 118N	t	3 min.48 sec o 4 min.05 sec.					
S2	414.40 mg to 414.90mg	4.62mm to 4.73mm	126N to 142N		3 min 55 secs to 4 min					
S 3	412.10 mg to 415.20mg	4.84 mm to 4.88 mm	110N to 130N	3 min 02 sec. to 3 min 30 sec.						

u		Dissolution							
Formulatio	Quinapril Related Compound A (NMT 1.0%)	Quinapril Related Compound B (NMT 3.0%)	Single Unknown Impurity (NMT 0.2%)	Total Impurity (NMT 3.6%)	10 min	15 min	20 min	30 min	45 min
S1	0.24%	0.16%	BQL	0.40%	97%	99%	99 %	99 %	99 %
S2	0.22%	0.10%	BQL	0.32%	93%	99%	99 %	99 %	99 %
S3	0.29%	0.15%	BQL	0.44%	97%	98 %	98 %	98 %	98 %

 Table 27: Analytical Results of Prototype Formulation

Figure 13: Graphical representation of Related Substances of prototypeformulation

Figure 14: Graphical representation of dissolution profiling of prototype formulation

All the physical parameters were found satisfactory. There is also no significant difference found within related substance & dissolution data obtained from tablets with different concentration of Basic magnesium carbonate Heavy P Grade as stabilizer within the studied range.

5.4	0	otimization	of Disintegrant	(Crospovidone)	(Kollidon CL F) Concentration:
2.7	\mathbf{v}	pumization	of Dismicgi and	(Crospovidone)) Concentration.

able 20. Thysical Troperties of Trototype Formulation										
Physical Properties										
Formulation	Bulk Densit	y Tapped Density	Hausner Rat	io Carr's Index						
D1	D1 0.501 0.679 1.356		26.25							
D2	0.545	0.69	1.266	21.014						
D3	0.505	0.638	1.264	20.879						
		Compress Param	eters							
Formulation	Bulk Density	Tapped Density	Hausner Ratio	Carr's Index						
D1	411.20mg to 412.80mg	4.65mm to 4.70mm	115N to 123N	2 min.48 sec to 3 min.15 sec.						
D2	414.40 mg to 414.90mg	4.62mm to 4.73mm	126N to 142N	3 min 55 secs to 4 mins						
D3	411.50mg to 413.20mm	4.65mm to 4.71mm	112N to 127N	2 min 32 sec. to 3 min 05 sec.						

Table 28: Physical Properties of Prototype Formulation

Table 30: Dissolution Profiling of Prototype Formulation

	Analytical Results								
Formulation	Dissolution Apparatus : USP Type I (Basket) Medium : Water (900mL) Agitation speed :100 RPM								
	10 min	15 min	20 min	30 min	45 min				
D1	96%	98%	98%	98%	98%				
D2	93%	99%	99%	99%	99%				
D3	98%	100%	100%	100%	100%				

Figure 17: Graphical representation of dissolution profiling of prototype formulation

All the physical parameters were found satisfactory. There is no significant difference found within dissolution data obtained from tablets with different concentration of Crospovidone (Kollidon CL F) as Disintegrant within the studied range

5.5 Optimization of Binder (Povidone K 30) Concentration:

 Table 31: Physical Properties of Prototype Formulation

Compress Para	meters							
Formulation Bulk Density Tap		Tapped	Tapped Density		Hausner Ratio		Carr's Index	
B1	0.51	0.	641	1.	.258		20.482	
B2	0.545	0.	.69	1.266			21.014	
B3	0.499	0.	641	1.	.286		22.222	
Compression P	arameters							
Formulation	Average Weigh	ıt	Thickness		Hardness		Disintegration Time	
B1	411.50mg to 41	2.80mg	4.65mm to 128N to		128N to	138N	2 min.50 sec to 3 min.10	
			4.701				sec.	
B2	414.40 mg to 414.90mg		4.62m 4.73i	.73mm 126N to		142N	3 mins 55 secs to 4 mins	
B3	412.00mg to 413.20mm		4.60m 4.65i	m to nm	125N to	136N	4 min to 4 min 20 sec.	

Table 33: Dissolution profiling of Prototype Formulation

	Analytical Results (Dissolution) Apparatus : USP Type I (Basket) , Medium : Water (900mL), Agitation speed :100 RPM						
Formulation	10 min	15 min	20 min	30 min	45 min		
B1	91%	98%	100%	100%	100%		
B2	93%	99%	99%	99%	99%		
B3	98%	102%	102%	102%	102%		

Figure 20: Graphical representation of dissolution profiling of prototype formulation

All the physical parameters were found satisfactory. There is also no significant difference found within dissolution data obtained from tablets with different concentration of binder Povidone K 30 (Kollidon 30) within the studied range.

5.6 Optimization of Lubricant (Magnesium Stearate) Concentration:

Table 34: Physical Properties of Prototype Formulation

Physical Properties							
Formulation	Bulk Density	Tapped Density	Hausner Ratio	Carr's Index			
L1	0.529	0.799	1.51	33.76			
L2	0.545	0.69	1.266	21.014			
L3	0.534	0.685	1.28	22.078			
Compression Parameters							
Formulation	Average Weight	Thickness	Hardness	Disintegration Time			
L1	399.60mg to 401.10mg	4.63mm to 4.69mm	120N to 130N	2 min.35 sec to 3 min.05 sec.			
L2	400.30 mg to 401.300 mg	4.50 mm to 4.57 mm	126N to 142 N	3 min.10 sec to 3 min. 42 sec			
L3	399.20 mg to 401.40mm	4.63mm to 4.68mm	110N to 125N	3 min to 3 min 20 sec.			

Table 36: Analytical Results of Prototype Formulation

	Analytical Results								
u	Related Substance				Dissolution				
ati	il 1 A %)	il 1 B %)	.0%) le wn rity .2%)	Total Impurity (NMT 3.6%)	Apparatus : USP Type I (Basket) Medium :				
Int	pri ed	pr mc			Water (900mL) Agitation speed :100 RPM				
Forn	Quina Relat Compou (NMT 1	Quina Relat Compou (NMT 3	Sing Unkno Impu (NMT 0		10 min	15 min	20 min	30 min	45 min
L1	0.23	0.11	BQL	0.34	90%	96%	97%	97%	97%
L2	0.22	0.1	BQL	0.32	93%	99%	99%	99%	99%
L3	0.14	0.11	BQL	0.25	90%	99%	100%	100%	100%

Figure 23: Graphical representation of impurity profile of prototype formulation

Figure 24: Graphical representation of Dissolution profile of prototype formulation

All the physical parameters were found satisfactory. There is also no significant difference found within dissolution data obtained from tablets with different concentration of Magnesium stearate as lubricant within the studied range.

5.7 Stbility Evaluation

TE	ST	LIMITS	INITIAL	1 M	3 M	6 M
Average Weight		388.00 mg to	409.852 mg to	409.850 mg to	409.850 mg to	409.851 mg to
		412.00 mg	411.710 mg	411.705 mg	411.709 mg	411.710 mg
Thickness		4.3 mm to 4.9	4.84mm to	4.83mm to	4.84mm to	4.82mm to
		mm	4.89mm	4.89mm	4.87mm	4.87mm
Hardness		80 N to 160 N	94.5 N to	94.2 N to	94.0 N to	94.2N to 104.2
		00111010011	104.5 N	104.2 N	104.0 N	N
Disintegration		NMT 15 Mins	53 secs to 1	45 secs to 1	54 secs to 57	58 secs to 1
Ti	me		minute	min 10 secs	secs	min 05 secs
Dissolution		Not less than				
		80% (Q) of				
		the labeled				
		amount of	98.50%	98.30%	97.80%	97.20%
		Quinapril is				
		dissolved in				
		30 minutes.				
Assay		95% to 110%	99.60%	99.54%	99.52%	99.51%
	Quinapril					
ces	Related	(NMT 1.0%)	0.06%	0.07%	0.07%	0.10%
Related Substan	Compound A	, , , , , , , , , , , , , , , , , , ,				
	Quinapril					
	Related	(NMT 3.0%)	0.29%	0.29%	0.30%	0.31%
	Compound B					
	Single Unknown	(NMT 0.2%)	0.05%	0.05%	0.06%	0.07%
	Impurity	(14111 0.270)	0.0370	0.0570	0.0070	0.0770
	Total impurity	(NMT 3.6%)	0.40%	0.41%	0.43%	0.48%

Table 37: Final Formulation for Accelerated Stability Study

Figure 27: Graphical representation of impurity profile of accelerated stability study

Figure 26: Graphical representation of assay & Dissolution profile of accelerated stability study

All the physical parameters were found satisfactory during accelerated stability study. There is also no significant change found during the study period. Therefore shelf life of product can be suggested up to 24 months based on accelerated data.

References:

- 1. Law M, Wald N, Morris J (2003). Health Technology Assessment Report (PMID 14604498).
- Nelson M (2010) Australian Prescriber journal, "Drug treatment of elevated blood pressure." Page 108– 112.
- 3. Wright J M, Musini V M, Gill R (April 2018) "First-line drugs for hypertension," The Cochrane Database of Systematic Reviews. (PMID 29667175).
- 4. Wu HY, Huang JW, Lin HJ et al. (October 2013), "Comparative effectiveness of renin-angiotensin system blockers and other antihypertensive drugs in patients with diabetes: systematic review and Bayesian network meta-analysis" (PMID 24157497).
- 5. Digambar M, Ritesh S B (June 2017), "Development and evaluation of gastro-retentive floating tablets of a quinapril HCl by direct compression technique" (Article ISSN- 0975-1491, Volume 9, Issue 8, 2017).
- 6. Divyesh T, Praful B, Vikram P, "Enhancement of solubility of poorly water soluble anti-hypertensive drug by Nano sizing approach", (DOI: 10.4103/0975-7406.94137).
- 7. Drugs.com. American Society of Health-System Pharmacists (March 2019) "Quinapril Hydrochloride Monograph for Professionals".
- 8. British National Formulary (76th Edition) (2018) Page 172 (ISBN 9780857113382).
- 9. Medicines and Healthcare products Regulatory Agency (United Kingdom Product Assessment Report) Quinapril PL18909/0151-4.
- 10. G. P. Singh, H. M. Godbole et al (2004) "Stabilization of Quinapril by Incorporating Hydrogen Bonding Interactions" Indian Journal Pharma Science (PMC2865811).
- 11. British Pharmacopeia 2019 (Quinapril HCl Volume II- Page No. 750-751, Quinapril HCl tablet Volume III Page No. 1174-1175.
- 12. United States Pharmacopeia and National Formulary (USP 42), Quinapril HCl & Quinapril HCl tablets Volume II-Page No. 3770-3771 & 3775.

- 13. Dinesh Dayaramji Chakole, Palempalli Venkata et al (Jan 2004) Patent US20060106057A1 on "Stabilization of Quinapril using magnesium oxide".
- 14. Reynir Eyjolfsson (2004) under Patent Cooperation Treaty "WO2003059388A1" & European Union Patent No. EP1513555B1 on "Formulations of Quinapril and related ACE inhibitor".
- 15. Ashish AP, Pablo D (2005) Patent US6869963B2 on "Pharmaceutical compositions containing an ACE inhibitor"
- 16. Elbert E. Harris, Arthur A. Patchett, Edward W. Tristram (2010) US Patent No. 4374829A.
- 17. Kuchi S. Murthy, Michael R. Harris et al (2000) US Patent No. 4830853A Warner Lambert Company.
- Bhushnan Indu, Deshmukhe Jayadeep (May 2000), under Patent Cooperation Treaty Patent no. WO00/66116, PCT/IB00/00569 on "solid stable pharmaceuticals compositions containing enalapril maleate".
- 19. Steinberg SM, Bada JL. Peptide decomposition in the neutral pH region via the formation of diketopiperazines. J Org Chem. 1983; 48:2295–8.
- 20. Murthy K, Reisch R, Waldman F. Stabilized compositions. US Patent No. 4,743,450. 1988 May 10
- 21. Leskinen E, "Tablet disintegration: Effects of temperature and pH of aqueous disintegrating fluid and influence of solubility of diluent on the behaviour of superdisintegrants", Department of pharmacy, University of Helsinki, 2003
- 22. Swarbrick J, "Encyclopedia of Pharmaceutical Technology" Third Edition, Volume 1.
- 23. Merck & Co, Inc. The Merck index. 13th ed. Whitehouse Station: Merck & Co. Inc: 2001
- 24. Chimanlal G, Ronals TB. Kinetics of diketopiperazine formation using model peptides. J Pharm Sci. 1998;87:283-8
- 25. Safila Naveed, Safeena Nazeer1, Nimra Waheed "Degradation Study of Quinapril by UV Spectroscopy", Journal of Innovations in Pharmaceuticals and Biological Sciences ISSN: 2349-2759
- 26. Mr. Suresh Babu, T.Adinarayana, S.Santhosh, S.Sankar, SK.Rehana," Analytical method development and validation for the estimation of quinapril and tolcapone using RP-HPLC", research article, Intercontinental journal of pharmaceutical Investigations and Research, volume 4, issue 2
- Public Assessment Report of the Medicines Evaluation Board in the Netherlands for Quinapril 40 mg, quinapril (as hydrochloride), film-coated tablets, EU-procedure number: NL/H/0819/001/MR Registration number in the Netherlands: RVG 29866
- 28. European Pharmacopoeia 5.0 page 96
- 29. V. Mallikarjun, "Sustained Release Quinapril HCL Tablets Preparation and Evaluation", International Journal of Engineering Research And Management (IJERM)ISSN: 2349- 2058, Volume-07, Issue-01, January 2020
- 30. Raymond C Rowe Paul J Sheskey Marian E Quinn "Handbook of Pharmaceutical Excipients".
- 31. Lonn EM, Yosuf S, Jha P: Emerging role of angiotensin-converting enzyme inhibitors in cardiac and vascular protection. Circulation 90:2056–2069, 1994
- 32. Yushen Guo, Stephen R. Byrn, George Zografi," Physical Characteristics and Chemical Degradation of Amorphous Quinapril Hydrochloride" resrach article, Volume 89, Issue 1, P128-143, January 01, 2000
- 33. Lauten WB, Khan QA, Rajagopalan S, Lerakis S, Rahman ST, Parthasarathy S, Khan BV: Usefulness of quinapril and irbesartan to improve the anti-inflammatory response. Am J Cardiol 91:1116–1119, 2003
- 34. Cotton M.L, Wu D.W , Vadas E.B "Diketopiperazine formation, hydrolysis, and epimerization of the new dipeptide angiotensin converting enzyme inhibitor" RS- 10085. Pharm Res. 1987; 4: 392-397
- 35. Kertscher U., Bienert M., Krause E. et al "model peptides presenting diketopiperazine Kinetics" J Pharm Sci. 1998; 87: 283-288
- 36. Yang YW "Synthesis of novel angiotensin converting enzyme inhibitor quinapril and related compounds." J Med Chem. 1986; 29: 1953-1961Hausin R.J.
- 37. DeBolt M., Esteal A.et al, "Molecular and crystal structures of MDL27,467A hydrochloride and quinapril hydrochloride, two ester derivatives of potent angiotensin converting enzyme inhibitors."J Med Chem. 1991; 34: 511-517