

International Journal of ChemTech Research CODEN(USA): IJCRGG ISSN : 0974-4290 Vol.1, No.4, pp 1244-1250, Oct-Dec 2009

Simultaneous Estimation of Metronidazole and Ofloxacin in Combined dosage form by Reverse Phase High Performance Liquid Chromatography Method

Amit J. Kasabe^{*1}, Vikram V. Shitole², Vikram V. Waghmare², Vijay Mohite³ ¹Department of Pharmaceutical Chemistry,Nandha college of Pharmacy, Erode-638 052, Tamilnadu, India,

²Human Science Department,London Metro Politan University, London, ³Department of Pharmacology,Nandha college of Pharmacy, Erode-638 052, Tamilnadu, India.

*E-mail: amit9590@gmail.com

Abstract: A rapid, simple and sensitive chromatographic method (RP-HPLC) has been developed for the simultaneous estimation of Metronidazole and Ofloxacin in combined pharmaceutical dosage form (suspension). The chromatographic resolution was achieved using mobile phase acetonitrile:methanol:water at 6.5:2.5:1 (v/v). An isocratic HPLC with a single Waters 510 pumps, Waters tunable absorbance detector and μ -Bondapack C-18 column was used. The wavelength for detection was 313 nm. The flow rate was 1.0 ml/min. The validation data showed that the method is sensitive, specific and reproducible for simultaneous determination of Metronidazole (MET) and Ofloxacin (OFLOX) in combined dosage form. Calibration curves were linear from 5-100 μ g/ml⁻¹(r² >0.999) for MET and 5-65 μ g/ml⁻¹(r² >0.997) for OFLOX. Mean inter- and intra- analysis standard deviation (SD) were less than 2%. The proposed method provided an accurate and precise analysis for simultaneous estimation of MET and OFLOX by RP-HPLC method. **Keywords:** RP-HPLC, Metronidazole, Ofloxacin, Method Validation, Pharmaceutical dosage form.

Introduction and Experimental: Metronidazole is an antiprotozoal and chemically it is 2-methyl-5nitroimidazole-1-ethanol¹. Metronidazole act as a prodrug. It is converted in anaerobic organisms by the redox enzyme pyruvate-ferredoxin oxidoreductase. The nitro group of metronidazole is chemically reduced by ferredoxin (or a ferredoxin-linked metabolic process) and the products are responsible for disrupting the DNA helical structure, thus inhibiting nucleic acid synthesis². Extensive literature survey revels that various analytical methods have been reported for the estimation of MET in single and combination form such as UV spectrophotometric^{3,4}, HPLC^{5,6}.

Ofloxacin⁷ is an antimicrobial drug and chemically it is 9-fluro-2, dihydro-3-methyl-10(4-methyl-1-3 piperazynyl-7-oxo-7H-pyrido [1, 2, 3de]-1, 4benzoxacine-6-carboxilic acid. It acts by targeting bacterial DNA gyrase and topoisomerase IV. Extensive literature survey revels that various analytical methods have been reported for the estimation of OFLOX in single and combination form such as

spectrophotometric^{8,9}, conductometric¹⁰, HPLC¹¹⁻¹⁶, LC/MS/MS^{17,18}. Fixed dose combination containing MET and OFLOX in suspension dosage form is available in the market and no single method is yet reported for simultaneous estimation of both these drugs. The aim of the present work is to develop a simple, rapid, accurate and selective chromatographic method for the estimation of MET and OFLOX in suspension dosage form.

Instrument: PerkinElmer Lambda-35 UV-Visible double beam spectrophotometer with 1cm matched quartz and Isocratic HPLC with a single Waters 510 pumps, Waters tunable absorbance detector with μ -Bondapack C-18 column.

Chemicals and reagents: The sample of Ofloxacin was procured from Medico Pharma, Palghar and Metronidazole from Ciron Drugs and Pharmaceuticals Ltd.India. Suspension dosage form containing MET and OFLOX combination was procured from a local pharmacy. Acetonitrile, Methanol and Orthophosphoric acid were of analytical grade.

Preparation of solutions:

Selection of mobile phase:

The pure drug of MET and OFLOX were injected into sample injector of HPLC system and run in different solvent systems, like methanol and water, acetonitrile and water, methanol acetonitrile and water were tried at different pH condition to get best condition for separation of MET and OFL. It was found that Acetonitrile: Methanol: Water gives satisfied result as compaired to other mobile phases (pH 6.5).

Preparation of standard stock solution:

Standard stock solution of MET and OFLOX were prepared by weighing about 10 mg of drug, dissolved in 25 ml of solvent (methanol: water 1:1) to get 5 μ g/ml, 10 μ g/ml, 15 μ g/ml respectively of MET and OFLOX and then volume was made upto the mark with solvent to get 100 μ g/ml of standard stock solution of each drug.

Preparation of working standards:

From stock solution of metronidazole and ofloxacin 0.1 to 2 mL of solution were transferred to 10 Ml volumetric flask. The volume was made up to the mark with methanol to get a set of solutions for Metronidazole having concentration range 5,10,15,20,30,40,50,60,70,80,90,100ppm working standards solutions of both the drugs.

Preparation of calibration curves of the drug: Each of the working standard solutions were injected 6 times and the mean peak area ratio of each drug to that of standard were calculated and plotted against the concentration of drug. The regression of the concentration of each drug over the mean peak area ratio was obtained and these regression equations were used for the assay of suspension containing these drugs. The reproducibility of the method was suggested by low coefficient of variation in the peak area ratio. The precision and accuracy of the method was determined by intra and inter day variation in the mean peak area ratio for set of working solution and by the recovery study, respectively.

Assay of formulation:

In order to see the feasibility of proposed method for simultaneous estimation of MET and OFLOX in marketed pharmaceutical formulation, first it was tried on standard laboratory mixture (L1).

Prepare a laboratory mixture by weighing accurately 10 mg of MET and 30 mg of OFLOX and transfer to 100 ml volumetric flask and dissolved in methanol: water (1:1) and kept in ultrasonicator for 30 min .The solution was filtered through 0.45 µ membrane filter paper. This tab solution was further diluted with solvent to obtain mixed sample solution containing 5,10,20 µg/ml of MET and 15,30,60µg/ml of OFLOX respectively .Each sample solution was injected into sample injector of HPLC six times (n=6) under chromatographic condition as described above. Area of each peak was measured at 313 nm .The amount of drug present in the sample was determined from peak area of MET and OFLOX present in the pure mixture respectively (Fig 2 and Fig 4). The typical chromatogram of MET and OFLOX is shown in Fig 6. The results were statistically evaluated. Results as shown in Table- 1.

Assay of marketed formulation (L2):

Prepare a mixture by weighing accurately 10 mg of MET and 30 mg of OFLOX and transfer to 100 ml volumetric flask and dissolved in methanol: water (1:1) and kept in ultrasonicator for 30 min .The solution was filtered through 0.45 µ membrane filter paper. This tab solution was further diluted with solvent to obtain mixed sample µg/ml of MET and solution containing 5,10,20 15,30,60µg/ml of OFLOX respectively .Each sample solution was injected into sample injector of HPLC six times (n=6) under chromatographic condition as described above. Area of each peak was measured at 313 nm .The amount of drug present in the sample was determined from peak area of MET and OFLOX present in the pure mixture respectively. The typical chromatogram of MET and OFLOX is shown in Fig 7. The results were statistically evaluated. Results as shown in Table- 2.

Sr.no	Amount p	oresent	Amount fou	ınd	% (lable claim	of
	MET	OFLOX	MET	OFLOX	MET	OFLOX
1	100	300	100.0	300.20	100.0	100.0
2	100	300	101.25	300.36	101.2	100.12
3	100	300	101.3	300.90	101.3	100.3
4	100	300	100.8	300.24	100.8	100.08
5	100	300	100.7	300.5	100.7	100.1

Table-1: Assay of MET and OFLOX in laboratory mixture (L1):

1	24	6
	~ '	\sim

Sr.no	Amount p	oresent	Amount fou	Ind	% of lable claim	
	MET	OFLOX	MET	OFLOX	MET	OFLOX
1	100	200	100.5	198.60	100.5	99.60
2	100	200	99.8	199.00	99.8	99.68
3	100	200	98.9	201.00	98.9	99.52
4	100	200	100.2	200.80	100.2	100.0
5	100	200	100.35	200.40	100.3	100.28

Table-2: Assay of marketed formulation (L2):

Validation of Proposed method: The proposed method was validated as per recommendations of USP¹⁹ and ICH²⁰ guidelines for the parameters like recovery, precision and robestesness.

Results and Discussion: Ofloxacin (OFLOX) is a synthetic fluoroquinolone antibacterial agent, acts by inhibiting bacterial DNA gyrase enzyme which is required for DNA replication and thus causes bacterial lysis. Metronidazole is an antiprotozoal and acts by disrupting the DNA helical structure, thus inhibiting nucleic acid synthesis. Here, an attempt has been made to develop the chromatographic method for simultaneous estimation of Ofloxacin and Metronidazole. The mean peak area of metronidazole and ofloxacin are shown in the Table-7 and Table-8. The overlain spectra of both drugs showed good absorbance at 313nm (Fig 1), hence these wavelengths were selected for estimation of OFLOX and MET. Linearity of both OFLOX and MET were obeyed Lambert's and Beer's law. The Observation table for calibration curve of MET and OFLOX is given in Table 7 and Table 8. From the data obtained it is clear that calibration curves were linear from 5-100 μ g/ml⁻¹(r² >0.999) for MET and 5-65 μ g/ml⁻¹(r² >0.997) for OFLOX (Table 9). The regression of concentration of metronidazole and ofloxacin over their peak area ratio were found to be y=61348.2 X + 43718.96 and y=360525 X – 9067999, respectively. The regressions equations were used to estimate the drugs in their formulation and in validation only.

Recovery study: Recovery studies were carried out by adding a known amount of standard solution of pure drugs (MET and OFLOX)) to a preanalysed sample solution. The study showed the result within acceptable limit of above 99% and below 101% and lower values of RSD indicates the proposed method is accurate (Table-3). Precision: Precision studies were carried out using parameters like Intra-day and inter-day analysis Precision. The study showed the results within acceptable limit, i.e. % RSD below 2.0, indicating that the method is reproducible (Table 4 and Table 5).

Robustesness of method: The evaluation of robustness is considered during the development phase and was depends on the type of procedure under study. The parameters included was pH of the mobile phase, flow rate ,percentage of acetonitrile in the mobile phase .The solution containing $10\mu g/ml$ of MET and $30\mu g/ml$ of OFLOX was injected into the sample injector of HPLC six times under different parameters as mentioned in Table-6.

Lab	Drug	Level of %	Amount	Amount of	Amt.	% of
mixture		recovery	present	std added	Recovered	recovery*
			(mg/tab)	in mg	*	
	MET	80	100	80	177.75	98.75
	OF	80	300	240	534	98.8
	MET	100	100	100	202	101.25
L1	OF	100	300	300	606	101.0
	MET	120	100	120	220.1	100.0
	OF	120	300	360	659	99.84
	MET	80	100	80	178.9	99.3
	OF	80	200	160	359.9	99.9
L2	MET	100	100	100	199	99.5
	OF	100	200	200	400.5	100.1
	MET	120	100	120	221.0	100.45
	OF	120	200	240	439.7	99.93

Table-3: Recovery studies of MET and OFLOX by RPHPLC method:

*Mean of six determination (n=6)

Lab mixture	Drug	% Mean	±S.D	%R.S.D.
L1	MET	99.87	0.53351	0.0548
	OFLOX	99.76	0.251064	0.0957
L2	MET	99.89	0.548361	0.9964
	OFLOX	99.40	0.47606	0.1536

Table-4: Precision: Intra –day precision:

*Mean of six determination (n=6)

Table1-5: Precision: Inter –day precision:

Lab mixture	Drug	% Mean	±S.D	%R.S.D.
L1	MET	101.36	0.743326	1.0425
	OFLOX	100.95	0.736546	0.0342
L2	MET	101.35	0.700595	0.7356
	OFLOX	101.0	0.621718	0.0499

*Mean of six determination (n=6)

Table -6: Robustesness of Method:

SR.	Chromatographic changes	Retention tir	ne (tr)	Tailing Factor(T)
No	(Factors)				
		MET	OFL	MET	OFL
	pH of Mobile Phase				
	6.5	1.9	3.8	1.0	1.5
1	6.5	2	3.9	1.1	1.6
	6.6	2.1	3.99	1.24	1.55
	Flow rate(ml/Min)				
	0.9	2.1	3.8	1.20	1.59
2	1.0	2.0	3.9	1.1	1.6
	1.1	1.9	3.7	1.0	1.49
	% of ACT				
	64%	1.8	3.7	1.0	1.45
3	65%	2	3.9	1.1	1.6
	66%	2.5	4	1.2	1.55

Figure No. 1: Overlain UV Spectra of Metronidazole and Ofloxacin:

Fig 2- Typical chromatogram of standard Metronidazole (Pure):

Fig 3-Calibration curve of Metronidazole

Calibration curve equation, Y=360525 X – 9067999, r²=0.999

Table 7 -Observation table for calibration curve ofMetronidazole (n= 6):

Sr.	Concentration of	Area under
no.	Metronidazole (µg/ml)	curve (AUC)
1	5	439564
2	10	793474
3	20	1421828
4	30	2075394
5	40	2641732
6	50	3317200
7	60	4084532
8	70	4853857
9	80	5519686
10	90	6193724
11	100	6900352

Fig 5 -Calibration curve of Ofloxacin:

Table 8-Observation table for calibration curve of Ofloxacin (n=6):

Sr. no.	Concentration of	Area under curve
	Ofloxacin(µg/ml)	(AUC)
1	5	344784
2	10	688949
3	15	1050440
4	20	1315249
5	25	1504305
6	30	1787130
7	35	2187997
8	40	2440279
9	45	2741317
10	50	3195460
11	55	3440555
12	60	3699880
13	65	4085445

Calibration curve equation Y=61348.2 X + 43718.96 r²=0.9975

Table-9: Linear regression data for calibration curve of Metronidazole and Ofloxacin (n=6):

Name of drug	Linearity range* (µg/ml)	Slope*	Intercept*	Regression coefficient *(r ²)
Metro	5-100	360525	-9067999	0.999
Oflox	5-65	61348.2	43718.96	0.997

Fig 6: Typical chromatogram of MET and OFLOX present in laboratory mixture L1:

References

1. British Pharmacopoeia 2007, monograph 0675.

2. Tripathi K.D., Antiprotozoal Drugs., Essentials of Pharmacology.,5th edition., 750-753.

3. Jadhav G.P., More H.N., Mahadik K.R., Simultaneous UV-Spectrophotometric estimation of Nalidixic acid and Metronidazole., Indian Journal of Pharm.sci., 1998.,60., 246-248.

4. Maliwal D., Jain A., Maheswari R.K., Simultaneous UV-Spectrophotometric estimation of Norfloxacin and Metronidazole., Asian Journal of Pharmaceutics.,2008.

5. Ravishankar S., Vasudevan M., Nanjan M.J., PRHPLC method for estimation of Metronidazole., 1998., 35., 359-363.

6. Krishnan., Reddy S.R., Satyanarayan P.R.B., Estimation of Metronidazole in pharm. Dosage form., Acta Indica Chemistry., 2002., 28., 27-30.

7. Budavari S., O'Neill M. J., Smith A., Heckelman P. E. and Kinneary J.F., Eds., The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals,13th Edn., Merck and Co. Inc., Whitehouse Station, NJ, 2001, 6800.

8. Mashru R.C. and Banerjee S. K., Spectrophotometric Method for the Determination of Perfloxacin and Ofloxacin Pharmaceutical Formulation, Eastern Pharmacist, 1998, 41, 147-148.

9. Zhang X. Z., Wen W., Jiang J. Y., Luo S. D. and Cai H. S., First Order Derivative Spectrophotometry of Ofloxacin Gel, Chinese J. Pharm., 1997, 28, 314-315.

10. Tuncel M. and Atkosar Z., Determination of Ofloxacin in Tablet by Potentiometry and Conductometry, Pharmazie Germany), 1992, 47, 642-643.

11. Argekar A. P., Kapadia S. P., Raj S. V., Determination of Ofloxacin., Norfloxacin and Lomefloxacin, Ofloxacin, Perfloxacin and Ciprofloxacin by RP-HPLC, Indian Drugs, 1996, 33, 261-266.

12. Zhong L., Zhang X. Z. and Li K. L., Analysis and Stability Study on Ofloxacin Otic., J. Chromatogr. A., 2007, 1139, 45-52. 24.

13. Du Y. X., Luo D. and Wang Q. F., of Antibiotics in Urine and Wipe Samples from Determination of Ofloxacin in Human Serum by Environmental and Biological Monitoring–Reversed Phase HPLC, J. China Pharm., 1994, 25, 32-35.

14. Xu J., Lu W. and An Y. J., Determination of Ofloxacin by HPLC in Human Serum, Chinese J. Hosp. Pharm., 1993, 13, 535-536.

16. Ohkubo T., Kudo M. and Sugawara K., Determination of Ofloxacin in Human Serum by High Performance Liquid Chromatography with Column Switching, J. Chromatogr. 1992, 573, 289-293.

17. Leea H. B., Pearta T. E. and Svobodab M. L., Determination of Ofloxacin , Norfloxacin and Ciprofloxacin in Sewage by Selective Solid Phase Extraction, Liquid Chromatography with Fluorescence Detection and Liquid Chromatography–Tandem Mass Spectrometry. Chromatogr. A., 2007, 1139, 45-52.

18. Tuerk J., Reinders M., Dreyer D., Kiffmeyer T. K., Schmidt K. G. and Kuss H. M., Analysis of Antibiotics in Urine and Wipe Samples from Environmental and Biological Monitoring–Comparison of HPLC with UV, single MS and Tandem MS Detection, J. Chromatogr. B., 2006, 831, 72-80.

 The United States Pharmacopoeia, NationalFormulary-USP XXIV., Rockville, MD, United States Pharmacopoeial Convention Inc; 1998,2149-2152.
ICH, Q2B, Validation of Analytical Procedures: Methodology, International Conference on Harmonization: Geneva; 1996, November, 1-8.