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ABSTRACT: Natural polysaccharides, due to their outstanding merits, have received more and more attention in the
field of controlled drug delivery. Graft copolymerization improves the properties of natural polysaccharides to give them
a new property. On grafting, the host biopolymer gains some of the desired properties of monomer used for grafting.
Polysaccharide-based graft copolymers are of great importance to develop various stimuli-dependent controlled release
systems. The present review deals with the techniques employed for the synthesis of grafted polysaccharides and the
recent developments in designing novel drug delivery systems.
KEYWORDS: polysaccharides, graft copolymers, controlled drug delivery.

INTRODUCTION
Natural polysaccharides and their derivatives represent
a group of polymers widely used in the pharmaceutical
and biomedical fields for the controlled release of
drugs. The advantages of controlled drug delivery
systems are mainly the achievement of an optimum
concentration, usually for prolonged times, the
enhancement of the activity of labile drugs, due to
their protection against hostile environments, and the
diminishing of side effects due to the reduction of high
initial blood concentrations.1 The polysaccharides do
hold advantages over the synthetic polymers, generally
because they are nontoxic, less expensive,
biodegradable, and freely available, compared to their
synthetic  counterparts.  Natural  gums  can  also  be
modified to have tailor-made materials for drug
delivery systems.2 Therefore, in the years to come,
there is going to be continued interest in the natural
gums and their modifications with the aim to have
better materials for drug delivery systems.
In recent years, controlled drug delivery formulations
and  the  polymers  used  in  these  systems  have  become
much more sophisticated, with the ability to do more
than simply extend the effective release period for a
particular drug. For example, intelligent or smart

polymers play important role in drug delivery since
they may dictate not only where a drug is delivered,
but also when and with which interval it is released.3

The stimuli that induce various responses of these
polymeric systems include physical (temperature,
electric fields, light, pressure, sound,magnetic fields),
chemical (pH, ions) or biological/biochemical
(biomolecules) ones.4 In addition, materials have been
developed that should lead to targeted delivery
systems, in which a particular formulation can be
directed  to  the  specific  cell,  tissue,  or  site  where  the
drug it contains is to be delivered.5

Several polysaccharides such as sodium alginate,6-

10chitosan,11-15 guar gum,16-18 xanthan gum,19-

22pectin,23-24 gellan gum25-26 have been employed either
alone or in combination with their native or modified
forms to control the drug release from different types
of delivery system, but these just had a limited degree
of success. In recent years, graft copolymers designed
primarily for medical applications have entered the
arena of controlled release.
A graft copolymer is a macromolecular chain with one
or more species of block connected to the main chain
as side chain(s).27 Thus,  it  can be described as  having
the general structure, where the main polymer
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backbone, commonly referred to as the trunk polymer,
has branches of another polymeric chain emanating
from different points along its length.28 This
fascinating technique may be considered as an
approach to achieve novel polysaccharide-based
materials with improved properties including all the
expected usefulness of these biomaterials. This article
gives a comprehensive review on the techniques
employed for the graft copolymerization of
polysaccharides and the application of polysaccharide-
based graft copolymers for controlled dug delivery.
The present article includes majority of the relevant
research works published in this field.

GRAFT COPOLYMERIZATION OF
POLYSACCHARIDES
Grafting of synthetic polymer is a convenient method
to add new properties to a natural polymer with
minimum loss of the initial properties of the substrate.
Due to their structural diversity and water solubility,
natural polysaccharides could be interesting starting
materials for the synthesis of graft copolymers. Most
of the copolymers are prepared through graft
polymerization of vinyl or acryl monomers onto the
biopolymer backbone.29 The chemistry of grafting
vinyl/acryl monomers is quite different from that of
grafting non-vinyl/acryl monomers. Non-vinyl/acryl
graft copolymerization is possible via
polycondensation; however this has not been widely
used for preparing graft copolymers of polysaccharides
usually due to susceptibility of the polysaccharide
backbone to high temperature and harsh conditions of
the typical polycondensation reactions.28

Vinylic/acrylic graft copolymerization
Grafting of polyvinylic and polyacrylic synthetic
materials onto the polysaccharides are mainly achieved
by radical polymerization. Graft copolymers are
prepared by first generating free radicals on the
biopolymer backbone and then allowing these radicals
to serve as macroinitiators for the vinyl or acrylic
monomer. The chemical and radiation initiating
systems are employed to graft copolymerize these
monomers onto polysaccharides.

Chemical initiating system
Cerium in its tetravalent state is a versatile oxidizing
agent used most frequently in the graft
copolymerization of vinyl monomers onto cellulose
and  starch.   It  forms  a  redox  pair  with  the
anhydroglucose units of the polysaccharide to yield the
macroradicals under slightly acidic conditions.27,30

Acrylic and methacrylic acids were graft polymerized
onto chitosan by Shantha et al.31 and the grafting was
initiated by ceric ion. Kim and his coworkers32

reported the ceric-induced graft copolymerization of
N-isopropylacrylamide onto chitosan at 25°C to
prevent a high level of homopolymer formation. A
grafting yield of 48% was obtained at 0.5 M of
monomer concentration, 0.002 M of ceric ammonium
nitrate  initiator  and  2  h  of  the  reaction  time.  They
found a decreased percent of grafting when the
initiator concentration was higher than 0.002 M. Vinyl
acetate monomer was graft copolymerized onto
chitosan using the same initiating system at 60°C.
With an addition of 0.5-7.5g of chitosan based on 50g
vinyl acetate, the monomer conversion was found to be
70-80% after 2 h of reaction.33

Castellano and his coworkers34 performed graft
copolymerization of methyl methacrylate on various
natural substrates such as carboxymethyl cellulose,
hydroxypropyl cellulose, carboxymethyl starch and
hydroxypropyl starch in aqueous medium by the same
radical system. The graft copolymerization of sodium
alginate with polyacrylamide35 and ethyl acrylate36

using ceric ammonium nitrate as an initiator has also
been reported. Moreover, ceric ion induced solution
polymerization technique has been employed for the
synthesis of carboxymethyl cellulose-g-
polyacrylamide copolymer.37

In another study by Zohuriaan-Mehr and Pourjavadi,38

various natural and modified polysaccharides (i.e.
arabic gum, tragacanth gum, xanthan gum, sodium
alginate, chitosan, sodium carboxymethyl cellulose,
hydroxyethyl cellulose, methyl cellulose) were
modified using ceric-initiated graft polymerization of
acrylonitrile under inert atmosphere. They pointed out
that polyacrylonitrile-grafted polysaccharides were
thermally more stable than the corresponding non-
grafted substrates. Potassium persulphate (KPS)-
initiated graft copolymerization of acrylonitrile and
methylmethacrylate onto chitosan has been reported.39

A maximum graft yield of 249% was obtained with
0.12 M of acrylonitrile and 0.00074 M of KPS at 65°C
for 2 h for 1% chitosan solution. For chitosan-g-
polymethylmethacrylate, 0.14 M of
methylmethacrylate at 65°C gave a maximum grafting
of 276%. No residual monomers were found by HPLC
in the graft copolymers. Later, grafting of fatty acid on
the  starch  was  done  by Simi and Abraham40 using
potassium persulphate as catalyst. Same chemical
system was used for the initiation of polyacrylamide
grafting with cashew gum.41 In a subsequent study by
Kulkarni and Sa,42 a pH-sensitive graft copolymer of
polyacrylamide and sodium alginate was synthesized
by free radical polymerization using ammonium
persulphate (APS) under a nitrogen atmosphere. The
synthetic pathway of pH-sensitive polyacrylamide-g-
sodium alginate co-polymer has been represented in
Fig. 1.
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Fig. 1: Proposed mechanistic pathway for the
synthesis of polyacrylamide-g-sodium alginate
copolymer
In addition to the above chemical systems, various
redox initiating systems have been tried for the
synthesis of polysaccharide-based graft copolymers. A
study by Behari et al.43 revealed that the graft
copolymerization of acrylamide onto xanthan gum
could be initiated by the Fe2+/BrO3

− redox  system  in
aqueous medium under a nitrogen atmosphere. They
observed that grafting takes place efficiently when
acrylamide concentration and temperature were
4.0×10−3 moldm−3 and 35°C, respectively.
Graft copolymerization of guar gum with N-vinyl
formamide44 and acrylic acid45 has been established
using potassium bromate/ascorbic acid and
peroxydiphosphate (PDP)-silver(I) redox pairs,
respectively. Mahmoud46 utilized PDP/Fe2+ redox
initiation system for the polymerization of acrylic acid
with native locust bean gum. More recently, graft
copolymers of sodium alginate with itaconic acid has
been prepared in aqueous solution using benzoyl
peroxide (BPO) as the initiator. They identified the
optimum grafting conditions for maximum graft yield
with a reaction time of 1 h, reaction temperature of
85 °C, itaconic acid concentration of 1.38 M, BPO
concentration of 1.82 × 10−2 M and percentage of
alginate 1.5 g/dl.47

Radiation initiating system
Employing high-energy γ-radiation is an efficient basic
method for initiating radical graft polymerization onto
polysaccharides. Although the radiation-based grafting
is cleaner and more efficient in this regard than
chemical initiation methods, they are harder to handle
under technical conditions. Hence, few research
reports are available for the synthesis of graft
copolymers using radiation initiation system. Singh
and Ray48 graft copolymerized 2-
hydroxyethylmethacrylate onto chitosan films using
60Co γ-radiation to improve their blood compatibility.
They found that the level of grafting could be
controlled by the grafting conditions, namely solvent
composition, monomer concentration, dose rate, and
total dose. They achieved a maximum graft yield of
108% under the conditions of solvent water-methanol
volume ratio 1:1, monomer concentration 20 vol%,
dose rate 90 rad/s and total dose 0.216 Mrad.
To graft N-isopropylacrylamide onto alginate, varying
dosages of 60Co γ-radiation were irradiated onto
alginate films in deionized water and methanol media.
At 50 kGy of irradiation dose, N-isopropylacrylamide
monomers were grafted on the alginate with graft ratio
of 18.7%.49 Using microwave irradiation grafting of
polyacrylonitrile onto guar gum in water was done
without using any radical initiator or catalyst within a
very short reaction time. The extent of grafting was
adjusted by controlling the reaction conditions and a



Sabyasachi Maiti et al /Int.J. PharmTech Res.2010,2(2) 1353

maximum percentage grafting of about 188% was
obtained under optimum conditions in 1.66min.50

Xyloglucan, a water soluble polysaccharide was graft
copolymerized with acrylonitrile under the influence
of ceric ion under nitrogen atmosphere and microwave
irradiation.51

APPLICATIONS OF GRAFTED
POLYSACCHARIDES IN DRUG DELIVERY
In recent years, a wide variety of grafted
polysaccharides have been used to fabricate different
types of drug delivery system. Among these, colon
targeted drug delivery systems have attracted many
researchers due to the distinct advantages they present
such as near neutral pH, longer transit time and
reduced enzymatic activity. Moreover, in recent
studies,  colon  specific  drug  delivery  systems  are
gaining importance for use in the treatment of local
pathologies of the colon and also for the systemic
delivery of protein and peptide drugs. A hydrogel
system composed of konjac glucomannan,
copolymerized with acrylic acid and cross-linked by N,
N-methylene-bis-(acrylamide) was developed by Chen
and his coworkers52. In vitro release of 5-
aminosalicylic acid from the pH-sensitive hydrogel
was studied in pH 7.4 phosphate buffer containing
Cellulase E0240. The drug release reached 95.19%
after 36h and the drug release has been said to be
controlled by the swelling and degradation of the
hydrogels.
Later, Mundargi et al.53 prepared metronidazole tablets
using various polysaccharides or indigenously
developed graft copolymer of methacrylic acid with
guar gum for colon targeted drug delivery. Drug
release studies were performed in simulated gastric
fluid for 2h followed by simulated intestinal fluid at
pH 7.4. Uncoated tablets containing xanthan gum or
mixture of xanthan gum with methacrylic acid-g-guar
gum showed 30-40% drug release during the initial 4-
5h, whereas for tablets containing guar gum with the
graft copolymer, it was 70%. After enteric coating
with Eudragit-L 100, the release of metronidazole was
drastically reduced to 18-24%.  Since the cost of
synthesizing a new polymeric substance and testing for
its safety is enormous, polymeric physical blends are
frequently used as excipients in controlled drug
delivery systems due to their versatility. It was
observed that physical blends of starch graft
copolymers offer good controlled release of drugs, as
well as of proteins and present suitable properties for
use as hydrophilic matrices for colon-specific drug
delivery.54Polyacrylamide-g-guar gum (pAAm-g-GG)
was prepared by taking three different ratios of guar
gum  to  acrylamide  (1:2,  1:3.5  and  1:5)  and  were
hydrolyzed to induce carboxylic functional groups.
Diltiazem tablets were prepared with these graft

copolymers and hydrolyzed copolymers. In vitro drug
release was carried out in simulated gastric and
intestinal conditions. The drug release continued up to
8 and 12h, respectively, for graft copolymers and
hydrolyzed graft copolymers. Drug release was found
to be dissolution-controlled in case of unhydrolyzed
copolymer. With hydrolyzed copolymers, drug release
was swelling-controlled initially in 0.1 N HCl solution,
but at later stage, it became dissolution-controlled in
pH 7.4. Hydrolyzed graft copolymers were pH
sensitive and can be used for intestinal drug delivery.55

In a study, polyacrylamide grafted pectin was cross-
linked with varying amount of glutaraldehyde and it
was noticed that the cross-linked product showed
better film forming property and gelling property than
pectin. The pH dependent release of salicylic acid was
observed due to pH dependent swelling of the cross-
linked hydrogel.56 Atenolol-loaded polyacrylamide-g-
xanthan gum films were fabricated by solution casting
method for transdermal application. All the thin films
were slightly opaque, smooth, flexible, and permeable
to water vapor, indicating their permeability
characteristics suitable for transdermal studies. The
films were non-irritant to the mice skin and released
the drug in phosphate buffer saline solution in a
controlled manner.57An electroresponsive transdermal
hydrogel films using polyacrylamide-g-xanthan gum
and poly (vinyl alcohol) was developed for the on-
demand release of ketoprofen.58 A pulsated pattern of
drug release was observed as the electric stimulus was
switched on and off. The skin histopathology study
demonstrated that, after the application of an electrical
stimulus, there were changes in the structure of stratum
corneum and cell structure. In another study, they
developed an electrically responsive hydrolyzed
polyacrylamide-grafted-sodium alginate-based
membrane-controlled transdermal drug delivery
system and observed the similar characteristics.59

Kulkarni and Sa fabricated different pH-sensitive
polysaccharide-based hydrogel bead systems for
controlled drug delivery. They prepared ketoprofen-
loaded polyacrylamide-g-alginate beads by ionotropic
gelation/covalent cross-linking.42 The copolymer
exhibited considerable pH-sensitive behavior and the
drug release in pH 1.2 solution was much slower as
compared to that in pH 7.4 buffer solution. This was
due to higher swelling of the beads in alkaline pH
condition. The glutaraldehyde treated graft copolymer
beads demonstrated satisfactory in vitro drug release of
12% and 74% after 2h and 8h of dissolution. Stomach
histopathology of albino rats indicated that the beads
were  able  to  retard  the  release  of  the  drug  in  the
stomach, and gastric side-effects like ulceration,
hemorrhage and erosion of gastric mucosa were
diminished when the drug was entrapped into these
hydrogel beads. Following the same procedure, they
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developed carboxymethylcellulose-(polyacrylamide-g-
sodium alginate) interpenetrating network hydrogel
beads loaded with ketoprofen.60 The  erosion  was
observed with the beads containing only ionic
crosslinks whereas it was negligible with the beads
containing both ionic and covalent crosslinks. The
swelling of the beads and drug release was
significantly increased when pH of the medium was
changed from acidic to alkaline. Drug release followed
case II transport mechanism in acidic medium whereas
anomalous/non-Fickian transport mechanism was
observed in alkaline dissolution medium. Further, they
developed ketoprofen-loaded pH-sensitive
interpenetrating network hydrogel beads of
polyacrylamide-g-xanthan and sodium carboxymethyl
cellulose and evaluated the pH sensitivity and drug
release characteristics.61 Scanning electron microscopy
revealed that the interpenetrating polymer network
beads possess porous matrix structure in alkaline pH
whereas nonporous matrix structure was observed in
acidic pH. As pH of the medium was changed from 1.2
to 7.4, a considerable increase in swelling and drug
release was observed for the beads. They postulated
that at higher pH values, the carboxyl functional
groups of hydrogels undergo ionization and the
osmotic pressure inside the beads increases resulting in
higher swelling. The drug release mechanisms were
the same to that observed in polyacrylamide-g-alginate
beads in the respective dissolution medium. In a
subsequent study, they formulated pH-sensitive
ketoprofen-loaded hydrolyzed polyacrylamide-g-
xanthan beads by ionotropic gelation with trivalent
aluminium ions.62 Release  of  drug  from  the
copolymeric beads was much lesser than that from
pristine xanthan beads. While pristine xanthan gum
beads discharged the drug completely in 5h, a
maximum of 92.6% drug release was recorded from
the copolymeric beads at the end of 8h.
Pharmacodynamic activity and stomach
histopathology of albino rats indicated that the beads
were  able  to  retard  the  drug  release  in  stomach,  and
gastric side effects such as ulceration, hemorrhage and
erosion of gastric mucosa were diminished when the
drug was entrapped into polyacrylamide-g-xanthan
gum beads. Several novel functionalized graft
copolymer nanoparticles consisting of chitosan and the
monomer methyl methacrylate, N-dimethylaminoethyl
methacrylate hydrochloride, and N-
trimethylaminoethyl methacrylate chloride, have been
devised. The protein-loaded nanoparticles (150-280
nm) showed a maximal encapsulation efficiency of
100%. In vitro release study showed that these
nanoparticles could provide sustained drug release for
more than 24h.63 Nonirritant bioadhesive drug release
systems based on starch-acrylic acid graft copolymers
were developed for buccal application. The release rate

of theophylline depended on the ratio of starch to
acrylic acid and on the presence of cations in the graft
copolymers, but was practically not affected by the pH
(between pH 3 and 7) of the dissolution medium nor
by the type of starch used (corn, rice, or potato). In
general, the release behavior of the graft copolymers
was found to be non-Fickian suggesting that the
release was controlled by a combination of tablet
erosion and the diffusion of the drug from the swollen
matrix. Incorporation of divalent cations into the graft
copolymers led to a significant decrease in swelling
erosion of the tablets as well as a substantial
retardation of drug release. Highest work of adhesion
was obtained with graft copolymers containing
calcium ions as well as longer time of adhesion on
dog’s gingival.64 Some researchers investigated the
flocculation behaviors of graft copolymers. The
flocculation characteristics of polyacrylamide-g-
alginate copolymer were evaluated in 0.25 wt% kaolin
and 10 wt% iron ore suspensions. The flocculation
characteristics of these grafted polymers were also
compared with various commercially available
polymeric flocculants. Among the grafted alginates, it
was observed that, the graft copolymers containing
longer polyacrylamide chains were the most efficient
flocculating agent and it was found that the graft
copolymer showed better performance than the
commercial flocculants.65-66Six graft copolymers of
hydroxypropyl guar gum were synthesized with
variation in the number and length of grafted
polyacrylamide chains. Flocculation jar tests were
carried out in 0.25 wt % kaolin, iron ore, and silica
suspensions. Among the series of graft copolymers, the
one with fewest but longest polyacrylamide chains
showed the better performance.67 It has been reported
that a novel superabsorbent hydrogel of hydrolyzed
alginate-g-polymethacrylamide could exhibit high
swelling capacity at basic pH and reversible pH-
responsiveness property, and therefore this hydrogel
may be considered as an excellent candidate to design
controlled drug delivery systems.68 Research efforts
have also been directed toward the development of
semi-interpenetrating polymer network microspheres
of grafted polysaccharides.
The microspheres of acrylamide grafted on dextran
(AAm-g-Dex) and chitosan were prepared by
emulsion-crosslinking method using glutaraldehyde as
a crosslinker. Acyclovir, an antiviral drug with limited
water solubility, was successfully encapsulated into the
microspheres by varying the ratio of AAm-g-Dex and
chitosan, percentage drug loading and amount of
glutaraldehyde. Encapsulation of acyclovir in the
microspheres (265-388 μm) was up to 79.6%. In vitro
release studies indicated the dependence of drug
release rates on both the extent of crosslinking and
amount of AAm-g-Dex used in preparing
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microspheres; the slow release was extended up to
12h.69 The synthesis of capecitabine-loaded semi-
interpenetrating network hydrogel microspheres of
chitosan-poly(ethylene oxide-g-acrylamide) by
emulsion crosslinking using glutaraldehyde has also
been described.70 Scanning electron microscopy
confirmed spherical shapes and smooth surface
morphology of the microspheres. Capecitabine, an
anticancer drug, was successfully encapsulated into the
microspheres (82-168µm) and the encapsulation
efficiency varied from 79 to 87%. In vitro release
studies were performed in simulated gastric fluid (pH
1.2) for the initial 2h, followed by simulated intestinal
fluid (pH 7.4) until complete dissolution. The release
of capecitabine was continued up to 10h. Poly(vinyl
alcohol)-gellan gum interpenetrating network
microspheres were prepared by the emulsion cross-
linking method.71 Carvedilol, an antihypertensive drug,
was successfully loaded into these microspheres.
Formation of interpenetrating network and the
chemical stability of carvedilol after preparing the
microspheres was confirmed by Fourier transform
infrared spectroscopy. Scanning electron microscopy
confirmed the spherical nature and smooth surface
morphology of the microspheres produced. Carvedilol
was successfully encapsulated up to 87% in the

microspheres (230-346µm). The drug release of
carvedilol was continued up to 12h. Soppimath et al72

also reported the preparation of nifedipine-loaded
spherical, poly(vinyl alcohol)-guar gum
interpenetrating network microspheres (300µm) by
cross-linking with glutaraldehyde.

CONCLUSION
Recently, much attention has been paid to the graft
copolymerization of natural polysaccharides in order
to obtain novel tailored hybrid materials. After a
thorough literature survey, it was concluded that
polysaccharide-based graft copolymers are mainly
synthesized by free radical polymerization under the
influence of different chemical initiating systems.
These graft copolymers could be applied in the design
of various stimuli-responsive controlled release
systems such as transdermal films, buccal tablets,
matrix tablets, microsphers/hydrogel bead system and
nanoparticulate system. This contribution is intended
to stimulate further research on polysaccharide-based
graft copolymers in order to use these precious
renewable biomaterials instead of the fossil-based
materials used in bioscience and technology.
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