

International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 0974-4304 Vol.2, No.1, pp 334-340, Jan-Mar 2010

PharmTec

Synthesis and Characterization of Antibacterial activity from *Danazol-aminoca- proic acid derivative* on both Gram negative and Gram positive bacteria

Lauro Figueroa Valverde¹*, Francisco Díaz Cedillo², Maria Lopez-Ramos, Elodia Garcia-Cevera¹

¹Universidad Autónoma de Campeche, Av. Agustín Melgar, Col Buenavista, 24030

Campeche, Campeche, México.

²Escuela de Ciencias Biológicas del Instituto Politécnico Nacional. Prolongación

Carpio y Plan de Ayala, Col. Santo Tomás, 11340, D.F., México.

-Corresponding author-E-mail: lauro_1999@yahoo.com. Tel.: (981) 8119800 Ext. 73006. Fax (981) 8119800 Ext. 73002.

Abstract: In this work, *danazol-aminocaproic acid derivative* was synthesized and their antibacterial activity on both Gram negative and Gram positive bacteria was evaluated, using dilution method and the minimum inhibitory concentration (MIC). The results indicate that bacterial growth of *S. aureus* was inhibited in presence of *danazol-derivative* (MIC=1.04 × 10^{-3} mmol). Additionally, another data showed that *E. coli* was susceptibly to *danazol-aminocaproic acid derivative* with a MIC of 2.08×10^{-3} mmol). Finally, the growth bacterial of *K. pneumoniae* was blocked in presence of *danazol-derivative* (MIC= 2.08×10^{-3} mmol). In conclusion, experimental data suggest that molecular mechanism involved in the antibacterial activity induced by *danazol-derivative* could be because the *steroid* require of the hydrophilic region of spacer arm with free carboxyl group, in order to interact with some factors of the cell surface and integrate into the cytoplasmic membrane and induce growth bacterial inhibition. **Key Words:** Danazol, aminocaproic acid, antibacterial activity.

Introduction

Several causal agents, such as *S. aureus*¹, *K. pneumoniae*² and *E. coli*³ among others⁴, have been shown to accelerate the progression of infectious diseases. Although there are many therapeutic agents for the treatment of these bacterial microorganisms⁵⁻⁷, unfortunately, prolonged antibiotic therapy may induce bacterial-resistance^{8,9}, because some bacteria have developed ways to circumvent the effects of antibiotics^{10,11}. As a consequence several infectious diseases are reemerging, causing a serious public health problem^{12,13}. This fact requires an international

approach to its management, in this sense; new drugs have been developed for control of bacterial resistance¹⁴⁻¹⁶. For example, there has been a resurgence of interest in steroids as potential therapeutic agents for infectious diseases¹⁷. In this context, several steroid-antibiotics have been developed to mimic the antibacterial behavior of endogenous peptide antibiotics¹⁸. This task includes selective association of the steroid-antibiotic with disruption of bacterial membranes. The association relates to the chemical structural characteristics of the steroid-antibiotic agents such as, cationic forms and facially amphiphilic conformations,

which seems to be the key required for antibacterial activity¹⁹. It has also been suggested that membrane selectivity is primarily derived from ionic recognition of negatively charged bacterial membranes²⁰. In addition, several studies suggest that functional groups of steroid-derivative are involved in the bacterial activity²¹. In present study, the objective was to synthesize a new drug that can be used for treatment of

infectious diseases. Therefore, our initial design included the synthesis of *danazol-aminocaproic acid derivative*. It is important to mention that this *steroidderivative* have an arm with free carboxyl group involved in their chemical structure.

On the other hand, the *danazol-aminocaproic acid derivative* was used to evaluate their antibacterial activity on *S. proteus*, *K. pneumoniae* and *E. coli* using the microbial minimal inhibitory (MIC 90) method²².

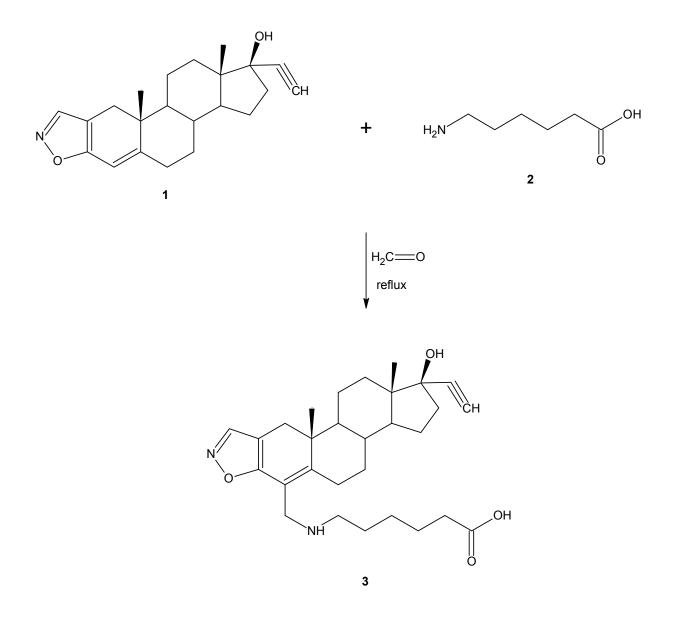


Figure 1. Synthesis of *danazol-aminocaproic acid derivative*. Reaction of *danazol* (1) with 6-aminocaproic acid (2) to form *danazol-derivative* (3).

Lauro Figueroa Valverde et al /Int.J. PharmTech Res.2010,2(1)

Experimental

Danazol and other compounds evaluated in this study were purchased from Sigma-Aldrich Co., Ltd. The melting points for the different compounds were determined on an Electrothermal (900 model). Ultraviolet spectroscopy (UV) was carried out in dry methanol on а Perkin-Elmer model 552 spectrophotometer and infrared spectra (IR) was recorded using KBr pellets on a Perkin-Elmer Lambda ¹³C NMR spectra were 40 spectrometer. ¹H and recorded on a Varian VXR-300/5 FT NMR spectrometer at 300 and 75.4 MHz in CDCl₃ using TMS as internal standard. EIMS spectra were obtained with a Finnigan Trace GCPolaris Q. spectrometer. Elementary analysis data were acquired from a Perkin-Elmer Ser. II CHNS/0 2400 elemental analyzer.

Synthesis of 6-[(2-ethyl-1-hydroxy-10a,12adimethyl-2,3,3a,3b,4,5,10,10a,10b,11,12adodecahydro-1*H*-7-oxa-8-aza-

dicyclopenta[a,h]phenanthren-6-yl-methyl)amino]hexanoic acid.

A solution of danazol (17-pregna-2,4-dien-20-yno[2,3d]-isoxazol-17-ol) 200 mg (0.59 mmol), 6aminocaproic acid 118 mg (1.18 mmol), in 10 mL of formaldehyde was gently refluxed for 24 h and then cooled to room temperature. The reaction mixture was evaporated to a smaller volume, diluted with water and extracted with chloroform. The organic phase was evaporated to dryness under reduced pressure, the residue purified by crystallization from was hexane:methanol:water (2:1:1), yielding 50 % of product; m.p. 76-78 °C; UV (MeOH) λ_{max} (log) 208 (2.68) 233 (1.65) nm; IR V_{max} 3300 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ_H:0.78 (3H, s, 35-CH₃), 0.78 (1H, m), 0.80 (1H, m), 1.01 (3H, s, 36-CH₃), 1.22-1.29 (3H, m), 1.40-1.81 (11H, m), 1.94-2.09 (4H, m), 2.22 (1H, m), 234-243 (4H, m), 3.08 (1H, m, C=CH), 3.76 (2H, s, C-CH₂-NH), 5.66 (3H, m, -NH, -OH), 8.03 (1H, s, isoxazol-ring). ¹³C NMR (74.5 MHz, CDCl₃) $\delta_{\rm C}$:14.04 (C-35), 19.10 (C-36), 20.97 (C-14), 22.54 (C-7), 22.90 (C-15), 23.30 (C-25), 25.48 (C-26), 28.95 (C-24), 30.98 (C-8), 31.75 (C-13), 33.57 (C-27), 33.93 (C-6), 37.00 (C-9), 37.22 (C-16) 38.00 (C-5), 45.50 (C-21), 46.28 (C-12), 48.60 (C-23), 52.88 (C-11), 54.41 (C-10), 75.14 (C=CH), 79.85 (C-17), 85.85 (C=CH), 109.80 (C-1), 116.80 (C-3), 141.96 (C-4), 148.16 (CH=N), 159.70 (C-2), 175.02 (CO₂H). EIMS 480.60 [M+, 18] m/z, 462.62 (57), 319.44(19), 439.12. Anal. Calcd. to C₂₉H₄₀N₂O₄: C, 72.47; H, 8.39, N, 5.83, 0, 13.32. Found. C, 72.45; H, 8.37; N, 5.78.

Biological evaluation

Strains: The microorganisms in this study belonged to the strain bank at the Department of Pharmaco-Chemistry at the Facultad of Ciencias Quimicobiologicas of the Universidad Autonoma de Campeche. The strains are certified by the Center for Disease Control in Atlanta and were as follows. *S. aureus* (ATCC 25923), *K. pneumoniae* (ATCC 700603) and *E. coli* (ATCC 25922). The strains are kept under refrigeration at 4 °C in special gel (BBL).

Antimicrobial agents: The steroids derivatives and the other compounds studied were dissolved in methanol and diluted with distilled water. Cefotaxime, gentamycin, methicillin and ciprofloxacin were used as control drugs.

Antimicrobial activity: The evaluation of antimicrobial effect of the different compounds on the bacterial species was made by method described by Chiong et $al.^{22}$. The bacterial species were incubated on McConkey (E. coli and K. pneumoniae) and Staphylococcus 110 (S. aureus) agars for 24 h at 37 °C. After 24 h, it was determined whether growth had taken place or not. In addition, a series of tubes were prepared, the first of which contained 2 mL of culture medium (tripticase soye) at double concentration and the remainder (11 tubes), contained the same quantity of medium at single concentrations. From the first tube (double concentration) an aliquot of 2 mL of the studied compound (1 mg/mL) was added and stirred, from this tube an aliquot of 2 mL was taken and added to the following tube (simple concentration) and the process was successively repeated until the last 2 mL of dissolution had been used up. After this process. each tube was inoculated with 0.1 mL of the bacterial suspension, whose concentration corresponded to McArland scale (9 \times 10⁸ cells/mL) and all the tubes were incubated at 37 °C for 24 h. Subsequently, a loop was taken from each of them and inoculated into the appropriate cultures for different bacterial organisms and were incubated for 24 h at 37 °C.

After such time, the minimum inhibitory concentration (MIC) was evaluated to consider the antimicrobial effect of all compounds. In order to discard the effect of methanol (solvent) on the bacterial species studied, a series of the same number of tubes was prepared in parallel, to which 2 mL of methanol at 60 % was added to the first and corresponding successive dilutions were added in the same way as before. In addition, a control series was also performed using distilled water at pH 7.0.

Results and Discussion

In this study, the Synthesis and Characterization of Antibacterial activity from Danazol-aminoca proic acid derivative on both Gram negative and Gram positive bacteria were made. The first step involves the coupling of 6-amino- caproic acid to danazol by the method reported by Mannich²⁸, using formaldehyde to form danazol-derivative which has characteristic an spacer arm with free carboxyl group involved in their chemical structure. The results indicate that ¹H NMR spectrum of danazol-aminocaproic acid derivative showed signals at 0.78 and 1.01 ppm corresponding to methyls presents in the heterocycles rings. In addition, another signal at 234 ppm for methylene bound to carboxyl group and 3.08 ppm for proton of alkyne (C=CH) were found. Additionally, another signal at 3.76 ppm for methylene involved in arm spacer bound to ring-A of danazol. Another signals at 5.66 ppm for protons of both amine group and the acidic hydrogen of C(=O)-OH were display. Finally, a signal at 8.03 ppm for proton corresponding to *isoxazol-ring* was found.

On the other hand, ¹³C NMR spectra displays chemical shifts at 14.04 and 19.10 ppm for the carbons of methyls groups presents in the *danazol* fragment. Another chemical shifts at 23.30-28.95 ppm for carbons of methylenes involved in spacer arm bound to danazol were found. In addition, several signals were display at 46.28 ppm for methylene of spacer arm bound to *ring-A* of *danazol*; two signals at 75.14 and 85.85 ppm for carbons of alkyne. Additionally, other signals at 109.80-159.70 for carbons corresponding to heterocycles. Finally, at 175.02 for the carbon of CO₂H was found. In addition, the presence of the danazol-aminocaproic acid derivative was further confirmed from mass spectrum which showed a molecular ion at m/z 480.60.

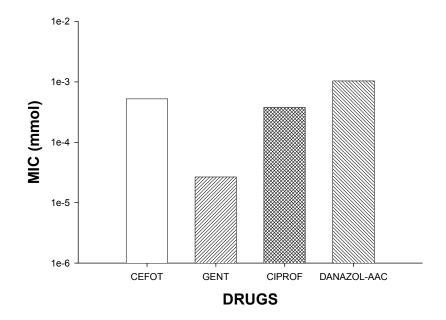
On the other hand, in the second step the antibacterial activity of *danazol-aminocaproic acid derivative* on S. aureus, K. pneumoniae and E. coli was evaluated by means of dilution method and the minimum inhibitory concentration (MIC)²², using gentamycin, ampicillin, *cefotaxime* and *cifroflaxin* as control in this study. The results obtained (Fig. 2) indicate that bacterial growth of S. aureus was inhibited with cefotaxime (MIC = 5.23×10^{-4} mmol), gentamycin (MIC = 2.68×10^{-5} mmol) and *ciprofloxacin* (MIC = 3.77×10^{-4} mmol). It is important to mention, that in presence of *ampicillin*, the bacterial growth of S. aureus was not blocked (data not shown). Additionally, the bacterial growth of S. aureus in presence of danazol-aminocaproic acid derivative ($MIC = 1.04 \times 10^{-3}$ mmol) was blocked. All this data indicate that antibacterial activity induced by danazol-derivative was lower in comparison with

cefotaxime (β -lactam antibiotic), *gentamycin* (inhibitor of synthesis of protein) and *ciprofloxacin*. This phenomenon can be due mainly to the different molecular mechanism involved and the characteristic chemical structure of the compounds studied in this study.

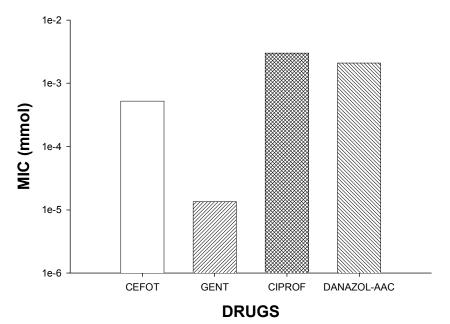
Therefore, was interesting to consider the molecular mechanism involved in the antibacterial activity induced by *danazol-derivative*. It is important to mention that this compound contains a spacer arm with free carboxyl group involved in their chemical structure, in addition involve a quaternary amine in the oxazol-ring. Several reports have shown that drugs with quaternary amine exert antibacterial activity against both Gram-positive and Gram-negative bacteria through perturbation of lipid bi-layer membranes that constitute the bacterial cytoplasmic membrane and the outer-membrane of bacteria²³. To evaluate this premise, we used the *danazol*, since the nature of functional groups contained in their chemical structure have a quaternary amine in the oxazol-ring. The results showed that in presence of *danazol* the bacterial growth of S. aureus was not blocked (data not showed). The experimental data suggest that quaternary amine of danazol by itself, does not have antibacterial activity on the pathogen microorganism studied. Those experimental data indicate that spacer arm with free carboxyl group involved in the chemical structure of *danazol-derivative*, could be the responsible of the antibacterial activity. In order to analyze this possibility, the antibacterial effect of 6aminocaproic acid compound on S. aureus was evaluated to compare with the antibacterial activity induced by the *danazol-aminocaproic acid derivative* on this pathogen. The results showed that the bacterial growth of S. aureus was not blocked (data not showed) in presence of 6-aminocaproic acid compound. It is important to mention that when *danazol* is bound with 6-aminocaproic acid to form the danazol-derivative, the bacterial growth of S. aureus is blocked, possibly because the quaternary amine group involved in oxazol-ring requires the hydrophilic region of spacer arm with free carboxyl group in order to interact with the cell surface and integrate into the cytoplasmic membrane. Such integration into the membrane is sufficient to perturb bacterial growth to cause the membrane to lose fluidity and for the cell to die. This phenomenon can be associated by interaction of danazol-drivative with teichoic acid that is an element of Gram-positive bacteria²⁴.

On the other hand, in alternative experiments on the antibacterial activity of *danazol-aminocaproic acid derivative* was evaluated on Gram negative bacteria using the same controls. The results showed (Fig. 4)

Lauro Figueroa Valverde et al /Int.J. PharmTech Res.2010,2(1)


that bacterial growth of *E. coli* in presence of *cefotaxime* (MIC = 5.23×10^{-4} mmol), *gentamycin* (MIC = 1.34×10^{-5} mmol) and *ciprofloxacin* (MIC = 3.01×10^{-3} mmol) was inhibited. Additionally, the bacterial growth of *E. coli* in presence of *danazol-aminocaproic acid derivative* was blocked (MIC = 2.08×10^{-3} mmol).

Other results, showed indicate that bacterial growth of K. pneumoniae in presence of cefotaxime (MIC = 2.61 \times 10⁻⁴ mmol), gentamycin (MIC = 2.68 \times 10⁻⁵ mmol) and *ciprofloxacin* (MIC = 1.5×10^{-3} mmol) was inhibited. Nevertheless, the bacterial growth of K. pneumoniae in presence of danazol-aminocaproic acid *derivative* was blocked (MIC = 2.08×10^{-3} mmol). It is important to mention, that in presence of *ampicillin*, the bacterial growth of both E. coli and K. pneumoniae was not blocked (data not shown). This data indicate that danazol-aminocaproic acid derivative have different antibacterial activity on E. coli and K. pneumoniae in comparison with the controls. Possibly, the molecular mechanism implied in the antibacterial activity induced by steroid-derivative can be shown by the intermolecular interaction of carboxyl group with the cations (Mg²⁺ and Ca²⁺), involved in the membrane cell providing a substantial increase the permeability of the outer membrane of Gram-negative bacteria and induce cell death. This premise is availed by other


reports made several investigators which suggest that spacer arm with free carboxyl group involved in other types of steroids may be key requirement for their activity^{25,26}. antibacterial Nevertheless, the antibacterial activity of danazol-derivative can also depend on the intermolecular interaction with the lipopolysaccharide of Gramnegative bacteria. This premise is based on the works by several investigators which developed a class of steroid antibiotics with the intent of mimicking the antibacterial activities of polymyxin B on Gram-negative bacteria²⁷. In addition, this phenomenon can induce, as consequence, an increase in the permeability of the outer membrane and induce growth bacterial inhibition on these pathogen microorganisms.

Conclusions

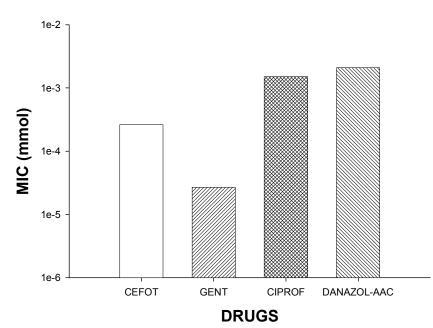

Experimental data suggest that molecular mechanism involved in the antibacterial activity induced by *danazol-derivative* could be because the *steroid* require of the hydrophilic region of spacer arm with free carboxyl group, in order to interact with some factors of the cell surface and integrate into the cytoplasmic membrane and induce growth bacterial inhibition.

Figure 2. Antibacterial effects induced by *danazol-aminocaproic acid derivative* (DANAZOL-AAC) and controls (cefotaxime, CEFOT; gentamycin, GENT and ciprofloxacin CIPROF) on *S. aureus*. Data showed that *S. aureus* was susceptibly to cefotaxime (MIC of 5.23×10^{-4} mmol), gentamycin (MIC = 2.68×10^{-5} mmol) and CIPROF (MIC = 3.77×10^{-4} mmol). Additionally, the bacterial growth of *S. aureus* in presence of *danazol-derivative* (MIC = 1.04×10^{-3} mmol) was inhibited. MIC = minimum inhibitory concentration.

Figure 3. Antibacterial effects induced by *danazol-aminocaproic acid derivative* (DANAZOL-AAC) and controls (cefotaxime, CEFOT; gentamicin, GENT and ciprofloxacin CIPROF) on *E. coli*. It is showed that exist differences of antibacterial activity of CEFOT (MIC = 5.23×10^{-4} mmol), GENT (MIC = 1.34×10^{-5} mmol) and CIPROF (MIC = 3.01×10^{-3} mmol) on *E. coli* in comparison with the *danazol- derivative* (MIC = 2.08×10^{-3} mmol). MIC = minimum inhibitory concentration.

Figure 5. Antibacterial activity induced by *danazol-aminocaproic acid derivative* (DANAZOL-AAC) and control (cefotaxime, CEFOT; gentamicin, GENT and ciprofloxacin CIPROF) on *K. pneumoniae*. Data showed that *K. pneumoniae* was susceptibly to cefotaxime (MIC = 2.61×10^{-4} mmol), gentamycin (MIC = 2.68×10^{-5} mmol) and CIPROF (MIC = 1.50×10^{-3} mmol). Additionally, the bacterial growth of K. *pneumoniae* in presence of *danazol-derivative* (MIC = 2.08×10^{-3} mmol) was inhibited. MIC = minimum inhibitory concentration.

References

1. Chambers H; Emerg. Infect. Dis. 2001, 7, 178.

2. Podschun R, and Ullmann U; Clin. Microb. Rev. 1998, 11, 589.

3. Lautenbach E, Patel J, Bilker W, Edelstein P, Fishman N; Clin. Infect. Dis. 2001, **32**, 1162.

4. Rothstein D, Hartman A, Cynamon M, Eisenstein B; Expert. Opin. Invest. Drugs. 2003, **12**, 255.

5. Wilson W, Karchmer A, and Dajani A; J. Am. Med. Assoc. 1995, **274**, 1706.

6. Yoo B, Triller D, Yong C, and Lodise T; Ann. Pharm. 2004, **38**, 1226.

7. Killgore M, March K, and Guglielmo B; Ann. Pharm.2004, **38**, 1148.

8. Hackbarth C, and Chambers H; Antimicrob. Agents Chemother. 1989, **33**, 995.

9. Maguire G, Arthur A, Boustead P, Dwyer B, and Currie B; J. Hosp. Infect. 1998, **38**, 273.

10. Peschel A; Trends Microbiol. 2002, 10, 179.

11. Yeaman M, and Younth N; Pharmcol. Rev. 2005, **55**, 27.

12. Cohen M; Science. 1992, 257,1050.

13. Colliton B; Nature. 1992, 356, 473.

14. Gordon E, Barrett R, and Dower J; J. Med. Chem. 1994, **37**, 1385.

15. Schwab U, Gilligan P, Jaynes J, and Henke D; Antimicrob. Agents Chemother. 1999, **43**, 1435.

16. Patch J, and Barron A; J. Am. Chem. 2003, **125**, 2092.

17. Li C, Lewis M, Gilbert A, Noel M, and Scoville D; Antimicrob. Agents Chemother. 1999, **43**, 1347.

18. Kikuchi K, Bernard E, Sadownik A, Regen S, and Armstrong D; Antimicrob. Agents Chemother. 1997, **41**, 1433.

19. Ding B, Guan Q, Walsh J, Boswell J, Winter T, Winter E, Boyd S, Li C, and Savage P; J. Med. Chem. 2002, **45**, 663.

20. Ding B, Taotofa U, Orsak T, Chadwell M, and Savage P; Org. Lett. 2004, **6**, 3433. 21. Pratt J; Clin. Chem. 1978, **24**, 1869.

22. Chiong R, and Betancourt A; Inst Nal Hig, Epidemiol Microbiol, Cuba. 1985, pp. 24-30.

23. Thorsteinsson T, Masson M, Kristinsson K, Hjalmarsdottir M, Hilmarsson H, and Loftsson T; J. Med. Chem. 2003, **46**, 4173.

24. Fisher W; Kates, Plenum Publishing Corp, New York. 1990, pp. 123-234.

25. Figueroa-Valverde L, Ceballos, G Díaz-Cedillo F, López M, Escalante R, and García L; Rev.Lat. Microbiol. 2008, **50**, 13.

26. Figueroa-Valverde L, Díaz-Cedillo F, López-Ramos M, and Díaz-Ku E; Synthesis, Characterization and Antibacterial Activity of Danazol-Pregnenolone Conjugate. Asian J. Chem. 2009, **21**, 6209.

27. Ding B,. Cardenas G, Evanson R, Orsak T, Fan M, Turin G, and Savage P; J. Am. Chem.Soc. 2004, **126**, 13642.
